Antagonistic activity of Bacillus subtilis strains isolated from various sources

A. N. Irkitova, A. V. Grebenshchikova, A. V. Matsyura


An important link in solving the problem of healthy food is the intensification of the livestock, poultry and fish farming, which is possible only in the adoption and rigorous implementation of the concept of rational feeding of animals. In the implementation of this concept required is the application of probiotic preparations. Currently, there is an increased interest in spore probiotics. In many ways, this can be explained by the fact that they use no vegetative forms of the bacilli and their spores. This property provides spore probiotics a number of advantages: they are not whimsical, easily could be selected, cultivated, and dried. Moreover, they are resistant to various factors and could remain viable during a long period. One of the most famous spore microorganisms, which are widely used in agriculture, is Bacillus subtilis. Among the requirements imposed to probiotic microorganisms is mandatory – antagonistic activity to pathogenic and conditional-pathogenic microflora. The article presents the results of the analysis of antagonistic activity of collection strains of B. subtilis, and strains isolated from commercial preparations. We studied the antagonistic activity on agar and liquid nutrient medias to trigger different antagonism mechanisms of B. subtilis. On agar media, we applied three diffusion methods: perpendicular bands, agar blocks, agar wells. We also applied the method of co-incubating the test culture (Escherichia coli) and the antagonist (or its supernatant) in the nutrient broth. Our results demonstrated that all our explored strains of B. subtilis have antimicrobial activity against a wild strain of E. coli, but to varying degrees. We identified strains of B. subtilis with the highest antagonistic effect that can be recommended for inclusion in microbial preparations for agriculture.


Bacillus subtilis; microbial antagonism; agar diffusion methods;, delayed antagonism; direct antagonism; Escherichia coli

Full Text:



Alvarez, F., Castro, M., Príncipe, A., Borioli, G., Fischer, S., Mori, G., Jofré, E. (2011). The plant‐associated Bacillus amyloliquefaciens strains MEP218 and ARP23 capable of producing the cyclic lipopeptides iturin or surfactin and fengycin are effective in biocontrol of sclerotinia stem rot disease. Journal of Applied Microbiology, 112, 1, (159-174),

Angom, Romita Devi, Rhitu, Kotoky, Piyush, Pandey, Sharma, G.D. (2017). Application of Bacillus spp. for sustainable cultivation of potato (Solanum tuberosum L.) and the benefits. Bacilli and Agrobiotechnology, 9, 185-211.

Baruzzi, F., Quintieri, L., Morea, M., Caputo, L. (2011). Antimicrobial compounds produced by Bacillus spp. and applications in food. Science against Microbial Pathogens: Communicating Current Research and Technological Advances. Badajoz, Spain: Formatex.

Beauregard, P.B., Chai, Y., Vlamakis, H., Losick, R., Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 110, 17, (E1621).

Berezhnoj, V.V., Korneva, V.V. (2015). Vozmozhnosti i perspektivy ispol'zovaniya otechestvennogo probiotika na osnove sporoobrazuyushchih bakterij v pediatricheskoj praktike. Sovremennaya pediatriya, 7(71), (in Russian).

Beric, T., Kojic, M., Stancovic, S., Topisirovic, L. (2012). Antimicrobial activity of Bacillus ssp. natural isolates and their potential use in the biocontrol of phytopathogenic bacteria. Food Technology and Biotechnology, 50, 25–31.

Cazorla, F.M., Romero, D., Pérez‐García, A., Lugtenberg, B.J.J., de Vicente, A., Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 103(5), 1950-1959.

Chizhaeva, A.V., Dudikova, G.N. (2017). Nauchnyj obzor: teoreticheskie i prakticheskie aspekty konstruirovaniya probioticheskih preparatov. Nauchnoe obozrenie. Biologicheskie nauki, 2, 157–166 (in Russian).

Das, B.K, Neha Nidhi, R.G., Pragyan, R., Muduli, A.K., Swain, P., Mishra, P.P., Jayasankar, P. (2014). Antagonistic activity of cellular components of Bacillus subtilis AN11 against bacterial pathogens. International Journal of Current Microbiology and Applied Sciences, 3(5), 795–809.

Donkova, N.V., Donkov, S.A. (2016). Antagonisticheskaya aktivnost amiloliticheskih shtammov bakterij Bacillus subtilis. Vestnik KrasGAU, 7, 173–179 (in Russian).

Egamberdieva, D. (2017). Bacillus spp.: A potential plant growth stimulator and biocontrol agent under hostile environmental conditions. Bacilli and Agrobiotechnology.

Falardeau, F., Wise, C., Novitsky, L., Avis, T.J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39, 7, (869).

García-Gutiérrez, L., Zeriouh, H., Romero, D., Cubero, J., Vicente, A., Pérez-García, A. (2013). The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microbial Biotechnology, 6(3), 264–274.

Grabova, A.Y., Dragovoz, I.V., Zelena, L.B., Tkachuk, D.M., Avdeeva, L.V. (2016). Antifungal activity and gene expression of lipopeptide antibiotics in strains of genus Bacillus. Biopolymers and Cell, 10.7124/bc.00090B, 32, 1, (41-48).

Irkitova, A.N., Kagan, Y.R., Sokolova, G.G. (2012). Sravnitel'nyj analiz metodov opredeleniya antagonisticheskoj aktivnosti molochnokislyh bakterij. Izvestiya Altajskogo gosudarstvennogo universiteta, 3, 41-44 (in Russian).

Josic, D., Pivic, R., Pavlovic, S., Stojanovic, S., Aleksic, G., Starovic, M. (2011). Antifungal activity of indigenous bacillus sp. isolate Q3 against marshmallow mycobiota, Zbornik Matice srpske za prirodne nauke, 120, (111).

Kaynar, P., Beyatli, Y. (2012). Antagonistic activities of Bacillus spp. strains isolated from the fishes. Journal of Applied Biological Sciences, 6(3), 77-81.

Kumar Solanki, M., Kumar Singh, R., Srivastava, S., Kumar, S., Lal

Kashyap, P., Srivastava, A.K. (2013). Characterization of antagonistic‐potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. Journal of Basic Microbiology, 55, 1, (82-90), (2013).

Kumar, P., Dubey, R.C., Maheshwari, D.K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(8), 493-499.

Lazovskaya, A.L., Grushina, N.V., Vorobeva, Z.G., Sliniia, K.N., Kulchickaya, M.A., Vasileva, E.A. (2010). Antagonisticheskaya aktivnost' sporovyh probiotikov i vliyanie na lekarstvennuyu chuvstvitel'nost' mikobakterij tuberkuleza. Vestnik RUDN. Seriya: Medicina, 1, 18–24 (in Russian).

Lazovskaya, A.L., Vorob'eva Z.G., Slinina K.N., Kulchickaya M.A. (2013). Sporovye probiotiki v sel'skom hozyajstve. Uspekhi sovremennoj biologii, 133(12), 133–140 (in Russian).

Lelyak, A.A., Shternshis, M.V. (2014). Antagonisticheskij potencial sibirskih shtammov Bacillus spp. v otnoshenii vozbuditelej boleznej zhivotnyh i rastenij. Vestnik Tomskogo gosudarstvennogo universiteta, 1(25), 42–55 (in Russian).

Lihua, Li, Jincai, Ma, A. Ibekwe, Qi, Wang, Ching-Hong, Yang (2015). Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150. Agriculture, 6, 4, (2).

Lihua, Li, Jincai, Ma, Yan, Li, Zhiyu, Wang, Tantan, Gao, Qi, Wang (2012). Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Protection, 35(29).

Liu, J., Hagberg, I., Novitsky, L., Hadj-Moussa, H., Tyler, J.A. (2014). Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biology, 118, 11, (855).

Mansour, A., Rakhisi, Z., Ahmady, A.Z. (2015). Isolation and identification of Bacillus species from soil and evaluation of their antibacterial properties. Avicenna Journal of Clinical Microbiology and Infection, 2(1), e23233.

Mardanova, A.M., Hadieva, G.F., Lutfullin, M.T., Khilyas, I.V., Minnullina, L.F., Gilyazeva, A.D., Bogomolnaya, L.M., Sharipova, M.R. (2017). Bacillus subtilis strains with antifungal activity against the Ppytopathogenic Fungi. Agricultural Sciences, 08, 01, (1)

Md Muzahid, E. Rahman, Delwar, M. Hossain, Kazuki, Suzuki, Ayaka, Shiiya, Kazushi, Suzuki, Tapan, Kumar Dey, Masanori, Nonaka, Naoki, Harada (2016). Suppressive effects of Bacillus spp. on mycelia, apothecia and sclerotia formation of Sclerotinia sclerotiorum and potential as biological control of white mold on mustard. Australasian Plant Pathology,

, 1, (103).

Mnif, I., Hammami, I., Ali Triki, M., Cheffi Azabou, M., Ellouze-Chaabouni, S., Ghribi, D. (2015). Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environmental Science and Pollution Research, 22, 22, (18137).

Moore T, Globa L, Barbaree J, Vodyanoy V, Sorokulova I (2013) Antagonistic Activity of Bacillus Bacteria against Food-Borne Pathogens. J Prob Health 1:110.

Pérez-García, A., Romero, D., de Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli in agriculture. Current Opinion in Biotechnology,

Qingyun, Zhao, Hui, Wang, Zihui, Zhu, Yinghui, Song, Huan, Yu (2015). Effects of Bacillus cereus F-6 on promoting Vanilla vanilla planifolia (Andrews.) plant growth and controlling stem and root rot disease. Agricultural Sciences, 06, 09, (1068).

Rao, M.S., Kamalnath, M., Umamaheswari, R., Rajinikanth, R., Prabu, P., Priti, K., Grace, G.N., Chaya, M.K., Gopalakrishnan, C. (2017). Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Scientia Horticulturae, 218, 56-62,

Savustyanenko, A.V. (2016). Mekhanizmy dejstviya probiotikov na osnove Bacillus subtilis. Aktualnaya infektologiya, 2, 35-44 (in Russian).

Sharma, R., Chauhan, A., Shirkot, S.K. (2015). Characterization of plant growth promoting Bacillus strains and their potential as crop protectants against Phytophthora capsiciin tomato. Biological Agriculture & Horticulture, 31, 4, (230).

Shrestha, A., Sultana, R., Chae, J-C., Kim, K., Lee, K-J. (2015). Bacillus thuringiensis C25 which is rich in cell wall degrading enzymes efficiently controls lettuce drop caused by Sclerotinia minor. European Journal of Plant Pathology, 142, 3, (577).

Skrypnik, I.N., Maslova, A.S. (2013). Effektivnost i bezopasnost sovremennyh sporoobrazuyushchih probiotikov pri lechenii narushenij mikrobiocenoza kishechnika. Zdrovya Ukraini, 22(323), 28–30 (in Russian).

Sorokulova, I. (2013). Modern status and perspectives of Bacillus bacteria as probiotics. J. Prob. Health, 1(4), 1000e106.

Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol, 56(4), 845–857.

Sumi, C.D., Yang, B.W., Yeo, I.C., Hahm, Y.T. (2015). Antimicrobian peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol, 61(2), 93–103.

Vignesh, R., Ravindran, J., Swathirajan, C.R. (2016). Biocontrol and other beneficial activities of Bacillus subtilis strains isolated from cow dung, soil compost and soil rhizosphere microflora. EC Bacteriology and Virology Research, 1(1), 31-35.

Yánez-Mendizábal, V., Usall, J., Vias, I., Casals, C., Marín, S., Solsona, C., Teixidó, N. (2011). Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology, 21(4), 409-426,


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138