Rates of 137Cs leaching by various crop plants

S. M. Pakshina, N. M. Belous, V. F. Shapovalov, E. V. Smolskiy, D. M. Sitnov


We studied the main reasons caused the agricultural crop variety regards 137Cs uptake and translocation from the soil. The cereal grains - oats (Avena sativa L.), Sudan grass (Sorghum vulgare L.), and millet seed (Panicum milaceum L.); grain legume – yellow lupine (Lupinus luteus L.), and fodder crop - annual ryegrass (Lutium multiflorum Lam) were considered in our research. The transpiration, transpiration coefficient, relative transpiration, multiplicity of decrease in the specific activity of 137Cs in phytomass towards experimental variants and control, the intensity of the bioleaching process of 137Cs, the specific surfaces of rhizosphere, the rhizosphere surface density of root charges, and constants of roots and soil ion conductivity were used to calculate the 137Cs leaching from the soil by different crops. We used special model that considered the effect of double electrostatic fields of the rhizosphere and soil on the ion flux to calculate the 137Cs bioleaching from the soil by various crops. We suggested that the conductivity of the root-soil interface was the main reason of specific variation in the 137Cs leaching from the soil. We ranged the studied crops according to the decrease of 137Cs leaching from sod-podzolic sandy soil: yellow lupine, sultan grass – oats seed – millet seed – perennial ryegrass.


bioleaching model; 137Cs; rhizosphere; specific surface; surface charge density; bioleaching intensity; soil and rhizosphere electrical conductivity

Full Text:



Agricultural Encyclopedia. (1972). Moscow: Soviet Encyclopedia (in Russian).

Beresford, N.A., Wells, C., Wood, M.D., Beaugelin-Seiller, K., Burgos, J. et al. (2015). Radionuclide biological half-life values for terrestrial and aquatic wildlife. J. Environ. Radioactivity, 150, 270-276. DOI: 10.1016/j.jenvrad.2015.08.018

Beresford, N.A., Yankovich, T.L., Wood, M.D., Fesenko, S., Andersson, P., Muikku, M., Willey, N.J. (2013). A new approach to predicting environmental transfer of radionuclides to wildlife: A demonstration for freshwater fish and cesium. Science of the Total Environment, 463-464, 284-292. DOI: 10.1016/j.scitotenv.2013.06.013

Bradshaw, C., Kapustka, L., Barnthouse, L., Brown, J., Ciffroy, P. et al. (2014). Using an Ecosystem Approach to complement protection schemes based on organism-level endpoints. J. Environ. Radioactivity, 136, 98-104. DOI: 10.1016/j.jenvrad.2014.05.017

Budyko, M.I. (1956). Heat balance of the Earth surface. Leningrad, Hydrometeoizdat (in Russian).

Drake, M., Vengeis, J., Colby, W.S. (1951). Cation-exchongo Capacity of Plant Roots. Soil Science, 72(2), 139-149.

Drake, M. (1964). Soil chemistry and plank nutrition. In: Chemistry of the soil. New York-London.

Fesenko, S., Chupov, A., Jacob, P., Ulanovsky, A., Bogdevich, I. et al. (2013). Justification of remediation strategies in the long term after the Chernobyl accident. Journal of Environmental Radioactivity, 119, 39-47. DOI: 10.1016/j.jenvrad.2010.08.012

Fesenko, S., Isamov, N., Sanzharova, N., Fesenko, E., Barnett, C.L., Beresford, N.A., Howard, B.J. (2015). Review of Russian language studies on radionuclide behaviour in agricultural animals: biological half-lives. J. Environ. Radioactivity, 142, 136-151. DOI: 10.1016/j.jenvrad.2015.01.015

Fesenko, S., Monken-Fernandes, H. (2013). Environmental remediation: From Arlington to Astana. J. Environ. Radioactivity, 119, 1-4. DOI: 10.1016/j.jenvrad.2013.01.008

Garnier-Laplace, J., Beaugelin-Seiller, K., Hinton, T.G., Geras’kin, S., Oudalova, A., Della-Vedova, C., Real, A. (2013). Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J. Environ. Radioactivity, 121, 12-21. DOI: 10.1016/j.jenvrad.2012.01.013

Geraskin, S., Evseeva, T., Oudalova, A. (2013). Effects of long-term chronic exposure to radionuclides in plant populations. J. Environ. Radioactivity, 121, 22-32. DOI: 10.1016/j.jenvrad.2012.03.007

Geras'kin, S.A., Volkova, P.Y. (2014). Genetic diversity in Scots pine populations along a radiation exposure gradient. Science of the Total Environment, 496, 317-327. DOI: 10.1016/j.scitotenv.2014.07.020

Howard, B.J., Beresford, N.A., Barnett, C.L., Wells, C., Copplestone, D. et al. (2013). The IAEA handbook on radionuclide transfer to wildlife. J. Environ. Radioactivity, 121, 55-74. DOI: 10.1016/j.jenvrad.2012.01.027

Mehlich, A., Drake, M. (1953). Soil chemistry and plank nutrition (pp. 286-328). In Chemistry of the soil. New York.

Pakshina, S.M., Petukhov, V.R. (1976). Impact of double electric layers of root surface and soil particles on the availability of nutritional elements to the plants. Agricultural Chemistry (Agrokhimiya), 5, 97-102 (in Russian).

Pakshina, S.M. (1990). Salt migration in soil micropores. Thesis of Doctoral Dissertation. Novosibirsk (in Russian).

Penman, X. (1972). Water turnover. Moscow: Mir (in Russian).

Shatilov, I.S. (1978). Water usage and plant transpiration in field conditions. In: Scientific background of crop prognosis. Moscow: Kolos (in Russian).

Yankovich, T., Beresford, N.A., Barnett, C.L., Fesenko, S., Fesenko, J. et al. (2013). Establishing a database of radionuclide transfer parameters for freshwater wildlife. J. Environ. Radioactivity, 126, 299-313. DOI: 10.1016/j.jenvrad.2012.07.014

DOI: http://dx.doi.org/10.15421/2017_35

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138