Impact of tropho-metabolic activity of earthworms (Lumbricidae) on distribution of soil algae within Acer platanoides L. plantation in recultivated territories of Western Donbass (Ukraine)

O. Didur, Y. Kulbachko, Y. Maltsev

Abstract


Rational use of natural resources in conditions of modern environmental management is an ongoing challenge to maintain sufficient level of wellbeing – natural resources and healthy environment in the contest of biodiversity preservation, formation of soil fertility, esthetic properties of landscapes and other ecologically important services. One way to optimize technogenic landscapes is forest recultivation – creation of stable forest ecosystems on disturbed territories, which can be powerful environmentcreation tool. The pertinent activity of animals – ecological engineers has great importance for improvement of ecological state of forest ecosystems on the recultivated territories. Soil engineers, such as earthworms, are the key organisms in functioning of soil – most important component of terrestrial ecosystem. They participate in various ecological processes and play key role in numerous ecosystem services: biogeochemical cycles support, forming of sustainable hydrological regime of territory and soil productivity, protection from the erosion. Additional natural soil biotic factor, multiplying these effects – algae, which reflect biogenic grade of soil and their naturalization in conditions of forest recultivation. Although, soil algae and earthworms are important components, supporting soil fertility, biogenic relationship of these groups of organisms, especially in the conditions of forest recultivation, remains largely unstudied The aim of the research is to evaluate the impact of pedotrubation and tropho-metabolic activity of earthworms (Oligochaeta: Lumbricidae) on resettlement of soil algaflora representatives within maple (Acer platanoides L.) plantation on the soil recultivation plot in Western Donbass in the Steppe zone of Ukraine. In fresh coprolites of earthworms Aporrectodea caliginosa on the studied plot, five species of soil algae (Chlorella vulgaris Beijerinck, Botrydiopsis eriensis Snow, Phormidium retzii (Agardn) Gomont, Bracteococcus sp., Chlorococcum pulchrum Archibald et Bold) were found. They belong to divisions Chlorophyta, Cуаnophyta, Xantophyta and represented by Ch- and P-living forms, which can dwell in artificial forest ecosystem with severehydrothermal conditions. Such representatives as Phormidium retzii, Chlorococcum pulchrum, Botrydiopsis eriensis were present only in soil and coprolites on the soil surface. This indicates their rise to the soil surface in result of tropho-metabolic and pedotrubation activity of worms. This allows considering that, earthworms in the studied plot of soil recultivation contribute to redistributions and resettlement of soil algae, their exploration to new territories, and ultimately – naturalization of artificial edaphotopes of forest plantations in recultivated lands.


Keywords


ecosystem services;ecological engineers;forest recultivation;biogenicity of soil;coprolites of earthworms;soil algae

Full Text:

PDF

References


Albrecht, A., Angers, D.A., Beare, M.H., & Blanchart, E. (1998). Soil aggregation, soil organic matter and soil biota interactions: Implications for soil fertility recapitalization in the tropics. Cahiers Agricultures, 7(5), 357–363.

Amossé, J., Turberg, P., Kohler-Milleret, R., Gobat, J.-M. & Le Bayon, R.-C. (2015). Effects of endogeic earthworms on the soil organic matter dynamics and the soil structure in urban and alluvial soil materials. Geoderma, 243–244, 50–57. doi: https://doi.org/10.1016/j.geoderma.2014.12.007

Baranova, O.O. (2012). Vodorosti zalizorudnykh vidvaliv i khvostoskhovyshch Kryvorizhzhia [Algae of iron ore dumps and tailing pounds]. Liuks, Melitopol. (In Ukrainian).

Benbrahim, K.F., Ismaili, M., Benbrahim, S.F.& Tribak A. (2004). Land degradation by desertification and deforestation in Morocco. Sécheresse, 15(4), 307–320.

Bhadauria, T. & Saxena, K.G. (2010). Role of Earthworms in Soil Fertility Maintenance through the Production of Biogenic Structures. Applied and Environmental Soil Science, Article ID 816073, 7 pages. doi: 10.1155/2010/816073

Blouin, M., Hodson, M.E. & Delgado, E.A. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science, 64(1), 161–182. doi: 10.1111/ejss.12025

Brygadyrenko, V.V. (2015). Vplyv umov zvolozhennia ta mineralizatsii gruntovoho rozchynu na strukturu pidstylkovoi mezofauny shyrokolystianykh lisiv stepovoi zony Ukrainy [Influence of moisture conditions and mineralization of soil solution on structure of litter macrofauna of the deciduous forests of Ukraine steppe zone]. Visnyk of Dnipropetrovsk University. Biology, ecology, 23(1), 50–65. (In Ukrainian). doi: 10.15421/011509

Cameron, E.K., Proctor, H.C. & Bayne E.M. (2013). Effects of an Ecosystem Engineer on Belowground Movement of Microarthropods. PLoSONE, 8(4), e62796. doi: 10.1371/journal.pone.0062796

Chakravarty, S., Ghosh, S.K., Suresh, С.Р., Dey, A.N. & Shukla G. (2012). Deforestation: causes, effects and control strategies. In: Global Perspectives on Sustainable Forest Management, Dr. Dr. Clement A. Okia (Ed.), InTech, doi: 10.5772/33342

Chibrik, T.S., Lukina, N.V., Filimonova, E.I., Glazyrina, M.A., Rakov, E.A., Maleva, M.G. & Prasad, M.N.V. (2016). Biological recultivation of mine industry deserts: Facilitating the formation of phytocoenosis in the middle Ural region, Russia. In: Prasad, M.N.V. (ed) Bioremediation and Bioeconomy, 1st edn. Elsevier, 389–418.

doi: http://doi.org/10.1016/B978-0-12-802830-8.00016-2

Cunha, L., Brown, G.G., Stanton, D.W. G., Da Silva, E., Hansel, F.A., Jorge, G., McKey, D., Vidal-Torrado, P., Macedo, R.S., Velasquez, E., James, S.W., Lavelle, P., Kille, P. & the Terra Preta de Indio Network (2016). Soil Animals and Pedogenesis: The Role of Earthworms in Anthropogenic Soils. Soil Science, 181(3/4), 110–125. doi: 10.1097/SS.0000000000000144

Dubovik, I.E. (1995) Vodorosli erodirovannyih pochv i algologicheskaya otsenka pochvozaschitnyih meropriyatiy [Algae of eroded soils and algological evaluation of soil-protection measures]. Publ. Bashkir State University, Ufa. (In Russian).

Eisenhauer, N. (2010). The action of an animal ecosystem engineer: Identification of the main mechanisms of earthworm impacts on soil microarthropods. Pedobiologia, 53(6), 343–352. doi: 10.1016/j.pedobi.2010.04.003

Eisenhauer, N., Schlaghamersky, J., Reich, P.B. & Frelich, L.E. (2011). The wave towards a new steady state: effects of earthworm invasion on soil microbial functions. Biological Invasions, 13, 2191–2196. doi: 10.1007/s10530-011-0053-4

Faly, L.I., Kolombar, T.M., Prokopenko, E.V., Pakhomov, O.Y. & Brygadyrenko, V.V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38. doi: 10.15421/011705

Ferlian, O., Eisenhauer, N., Aguirrebengoa, M., Camara, M., Ramirez-Rojas, I., Santos, F., Tanalgo, K. & Thakur M. P. (2018). Invasive earthworms erode soil biodiversity: A meta-analysis. Journal of Animal Ecology, 87(1), 162–172.

doi: 10.1111/1365-2656.12746

Gollerbah, M.M. & Shtina, E. A. (1969). Pochvennyie vodorosli [Soil algae]. Nauka, Leningrad. (In Russian).

Ibarra, J.M.N. & de las Heras M.M. (2005). Open-Cast Mining Reclamation. In: Forest Restoration in Landscapes: Beyond Planting Trees, eds. Mansourian, S., Vallauri, D., Dudley, N. (in cooperation with WWF International), Springer, New York, 370–376.

Jouquet, P., Blanchart, E. & Capowiez, Y. (2014). Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology, 73, 34–40. doi: https://doi.org/10.1016/j.apsoil.2013.08.004

Kavdir, Y. & İlay, R. (2011). Earthworms and Soil Structure. In: Karaca, A. (eds) Biology of Earthworms. Soil Biology, 24. Springer, Berlin, Heidelberg, p. 39–50. doi: https://doi.org/10.1007/978-3-642-14636-7_3

Klymenko, G., Kovalenko, I., Lykholat, Y., Khromykh, N., Didur, O. & Alekseeva, A. (2017). The integral assessment of the rare plant populations. Ukrainian Journal of Ecology, 7(2), 201–209. doi: 10.15421/2017_37

Kostikov, I.Iu., Romanenko, P.O., Demchenko, E.M., Dariienko, T.M., Mykhailiuk, T.I., Rybchynskyi, O.V., Solonenko, A.M. (2001). Vodorosti gruntiv Ukrayiny (istoriya ta metody doslidzhennya, systema, konspekt flory) [Soil algae of Ukraine (history and methods of research, system, checklist of flora)]. Fitosotsiotsentr, Kyiv. (In Ukrainian).

Kul’bachko, Y.L., Didur, O.O., Loza, I.M., Pakhomov, O.E. & Bezrodnova, O.V. (2015). Environmental aspects of the effect of earthworm (Lumbricidae, Oligochaeta) tropho-metabolic activity on the pH buffering capacity of remediated soil (steppe zone, Ukraine). Biology Bulletin, 42(10), 899–904. doi: https://doi.org/10.1134/S1062359015100088

Kul’bachko, Y., Loza, I., Pakhomov, O. & Didur, O. (2011). The Zooecological Remediation of Technogen Faulted Soil in the Industrial Region of the Ukraine Steppe Zone. In: Behnassi, M., Shahid, S., D'Silva, J. (eds). Sustainable Agricultural Development. Springer, Dordrecht. p. 115–123. doi: 10.1007/978-94-007-0519-7_7

Kulbachko, Y.L., Didur, О.А., Pakhomov, O.Y.& Loza, I.М. (2014). Trophic-metabolic activity of earthworms (Lumbricidae) as a zoogenic factor of maintaining reclaimed soils’ resistance to copper contamination. Visnyk of DnipropetrovskUniversity. Biology, ecology, 22(2), 99–104. doi: 10.15421/011414

Kuzmishyna, S.V., Hnatush, S.O. & Halushka, A.A. (2015). MikrobIota porodnih vidvaliv vugilnih shaht Chervonogradskogo girnichopromislovogo rayonu za vnesennya zoli [Microbiota of coal pit waste heaps of Chervonograd Mining Region after coal ash application]. Visnyk of Dnipropetrovsk University. Biology, ecology, 23(1), 33–38. (In Ukrainian). doi: 10.15421/011506

Kuzyahmetov, G.G. & Dubovik, I.E. (2001). Metodyi izucheniya pochvennyih vodorosley [Methods for studying soil algae]. Publ. Bashkir State University, Ufa. (In Russian).

Li, X., Fisk, M.С., Fahey, T.J. & Bohlen, P.J. (2002). Influence of earthworm invasion on soil microbial biomass and activity in a northern hardwood forest. Soil Biology and Biochemistry, 34(12), 1929–1937. doi: https://doi.org/10.1016/S0038-0717(02)00210-9

Lykholat, T., Lykholat, O. & Antonyuk, S. (2016). Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. Cytology and Genetics, 50 (1), 32–41. doi: https://doi.org/10.3103/S0095452716010072

Lykholat, Y.V., Khromykh, N.A., Ivan’ko, I.A., Matyukha, V.L., Kravets, S.S., Didur, O.O., Alexeyeva, A.A. & Shupranova, L.V. (2017). Otsinka i prohnoz invaziinosti deiakykh adventyvnykh roslyn za vplyvu klimatychnykh zmin u Stepovomu Prydniprov’i [Assessment and prediction of the invasiveness of some alien plants in conditions of climate change in the steppe Dnieper region]. Biosystems Diversity, 25(1), 52–59. doi: 10.15421/011708

Maltsev, E.I. (2013). Ekolohichni osoblyvosti alhouhrupovan lisovykh pidstylok zaplavnykh dibrov stepovoi zony Ukrainy [Ecological features of algae groupings in forest litter of floodplain oak woods in steppe area of Ukraine]. Gruntoznavstvo, 14(1–2), 70–77. (In Ukrainian).

Maltsev, Y.I. & Konovalenko, T.V. (2017). New finding of green algae with potential for algal biotechnology, Chlorococcum oleofaciens and its molecular investigation. Regulatory Mechanisms in Biosystems, 8(4), 532–539. doi: 10.15421/021782

Maltsev, Y.I., Didovich, S.V. & Maltseva, I.A. (2017a). Seasonal changes in the communities of microorganisms and algae in the litters of tree plantations in the Steppe zone. Eurasian Soil Science, 50(8), 935–942. doi: 10.1134/S106422931706005

Maltsev, Y.I., Maltseva, I.A., Solonenko, A.N. & Bren, A.G. (2017b). Use of soil biota in the assessment of the ecological potential of urban soils. Biosystems Diversity, 25(4), 257–262. doi: 10.15421/011739

Maltsev, Y.I., Pakhomov, A.Y. & Maltseva, I.A. (2017c). Specific features of algal communities in forest litter of forest biogeocenoses of the Steppe zone. Contemporary Problems of Ecology, 10(1), 71–76. doi: 10.1134/S1995425517010085

Maltseva, I.A. & Baranova, O.O. (2014). Vodorosli tehnogennyih ekotopov zhelezorudnogo proizvodstva [Algae of technogenic ecotopes of iron-ore industry]. Algologiya, 24(3), 350–353. (In Russian).

Maltseva, I.A. & Chayka, N.I. (2011). Pochvennyie vodorosli otvala ugolnoy shahtyi Donetskoy oblasti [Soil algae of the coal mine in Donetsk region]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 1(3), 45–54. (In Russian).

Maltseva, I.A. & Posrednikova, A.V. (2011). Vyvchennia alhoflory derevnykh nasadzhen rekultyvovanoho vuhilnoho vidvalu shakhty Sviato-Serafimivska (Donetska oblast) [The algae flora investigation within tree plantations of the reclaimed coal dump of Svyato-Serafimivska mine (Donetsk region)]. Chornomorski Botanical Journal, 7(2), 187–193. (In Ukrainian).

Maltseva, I.A. (2007). Gruntovi vodorosti u funktsionalnii strukturi bioheotsenoziv [Soil algae in the functional structure of biogeocoenoses]. Gruntoznavstvo, 8(3–4), 71–79. (In Ukrainian).

Maltseva, I.A., Baranova, O.O. & Maltsev, E.I. (2009). Alhouhrupovannia bioheotsenoziv landshaftno-tekhnohennykh system Kryvorizhzhia [Algae groupings of biogeocoenoses of landscape-technogenic systems of Kryvorizhia]. Visnyk Zaporizkoho derzhavnoho universytetu, 2, 20–23. (In Ukrainian).

Mbaya, R.P. (2013). Land degradation due to mining: the gunda scenario. International Journal of Geography and Geology, 2(12): 144–158. doi: 10.18488/journal.10/2013.2.12/10.12.144.158

Satchell, J.E. (1983). Earthworm microbiology. In: Earthworm ecology. From Darwin to vermiculture. Springer Netherlands, p. 351–364. doi: 10.1007/978-94-009-5965-1

Scherbina, V.V., Maltseva, I.A. & Solonenko, A.N. (2014). Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova Biospheric National Park. Contemporary problems of ecology, 7(2), 187–191. doi: doi.org/10.1134/S1995425514020140

Shcherbyna, V.V., Maltseva, I.A., Maltsev, Y.I. & Solonenko, A.N. (2017). Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regulatory Mechanisms in Biosystems, 25(4), 633–638. doi: 10.15421/011797

Shekhovtseva, O.G. & Maltseva, I.A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400. doi: doi.org/10.1134/S1064229315120145

Shtina, E.A. & Gollerbah, M.M. (1976). Ekologiya pochvennyih vodorosley [Ecology of soil algae]. Nauka, Moscow. (In Russian).

Shtina, E.A., Kozlovskaja, L.S. & Nekrasova, K.A. (1981). O vzaimootnosheniyah pochvoobitayuschih oligohet i vodorosley [On the relationship between of soil-dwelling oligochaetes and algae]. Ekologiya, 1, 55–60. (In Russian).

Sirenko, L.A. & Kondrateva, N.V. (1999). Rol Cyanophyta v prirode (obzor) [The role of Cyanophyta in the nature (review)]. Algologiya, 3(1), 1–15. (In Russian).

Striganova, B.R. (1980). Pitanie pochvennyih saprofagov [Feeding of soil saprophages]. Nauka, Moscow. (In Russian).

Zhukov, A.V., Pakhomov, A.Y., Kunach, O.N. (2007). Biologichne riznomanittya Ukrayiny. Dnipropetrovska oblast. Doshhovy chervyaky (Lumricidae) [Biological diversity of Ukraine. The Dnnipropetrossk region. Earthworms (Lumbricidae)]. Dnipropetrovsk Univ. Press, Dnipropetrovsk. (In Ukrainian).




DOI: http://dx.doi.org/10.15421/2018_304

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138