Effect of sowing techniques on the agroecological parameters of cereal crops

V. I. Beljaev, V. V. Vol'nov, L. V. Sokolova, V. N. Kuznecov, A. V. Matsyura


In Western Siberia, the problem of obtaining full-fledged sprouts of cereal crops is due to hydrothermal conditions in the period of sowing-shoots, pests and diseases, and agronomical methods of sowing. In case of the direct sowing of cereal crops, the most common types of working organs of sowing machines are the V-sharped coulter, chisel and disc. The effectiveness of their use in the dry steppe of the Altai Territory has been poorly studied. To establish the most effective seed coulter in 26 farms in the dry part of the region, the studies were carried out from 2005 to 2012 on seeders with double disc coulters, with V-sharped coulters of domestic and foreign production, and with chisel-type coulters. The years of research (2006-2011) were characterized by a moisture supply below the average (vegetation rainfall was 80% of the norm), and in 2012 - as an acute drought (40% of the norm). The most effective seeders in the cultivation of spring wheat in the dry steppe are seeders equipped with chisel-type coulters. They allow better preservation of soil moisture (by 17-28 mm to control) during the sowing period, improving the quality of crops, field germinating by 4.8 - 12.0%, and increasing the yield of wheat. In the arid year of 2012, it amounted to 1.26 t/ha after fallow, 0.88 t/ha after peas, 0.46 t/ha after wheat, respectively, at 0.64, 0.59 and 0.25 t/ha for control (two-disc coulter SZP-3,6). Seeders with V-sharped coulters of domestic and foreign production, for wheat yields did not differ significantly, but exceeded the control under the conditions of the arid year by 0.21-0.59 t/ha, depending on the forecrop.



sowing complex; seeder; cereal crops; spring wheat; moisture reserves; yield; methods of sowing; working organs; forecrop; depth of seeding; field germination; weed infestation

Full Text:



Beljaev, V.I. (2012). Osnovnye napravlenija tehnicheskoj i tehnologicheskoj modernizacii proizvodstva zerna v Altajskom krae. Vestnik Altajskoj nauki, 3, 121-123 (in Russian).

Beljaev, V.I. (2015). Racional'nye parametry tehnologii ”No-Till” i prjamogo poseva pri vozdelyvanii sel'skohozjajstvennyh kul'tur v Altajskom krae. Vestnik Altajskoj nauki, 1(23), 7–12 (in Russian).

Beljaev, V.I., Vol’nov, V.V., Rudev, N.V., Sokolova, L.V. (2016a). Ocenka jeffektivnosti razlichnyh tipov vysevajushhih soshnikov pri prjamom poseve jarovoj pshenicy. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, 8(142), 143–148 (in Russian).

Beljaev, V.I., Sokolova, L.V., Bokarev, A.I. (2016b). Obosnovanie racional'noj tehnologii poseva jarovoj pshenicy s primeneniem posevnyh kompleksov JePPK-2.5 v stepnoj zone Altajskogo kraja. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, 9(143), 173–179 (in Russian).

Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F.X. & Huard, F. (2010). Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res. 119, 201-212, doi:10.1016/j.fcr.2010.07.012.

Cassman, K.G. (2012). What do we need to know about global food security? Global Food Security 1, 81-82, doi: http://dx.doi.org/10.1016/j.gfs.2012.12.001.

Chen, S., Zhang, X., Sun, H., Ren, T. and Wang, Y. (2010). Effects of winter wheat row spacing on evapotranpsiration, grain yield and water use efficiency. Agricultural Water Management, 97, 1126-1132. doi:10.1016/j.agwat.2009.09.005

Connor, D.J. & Mínguez, M.I. (2012). Evolution not revolution of farming systems will best feed and green the world. Global Food Security 1, 106-113, doi:10.1016/j.gfs.2012.10.004.

Cossani, C.M., Savin, R. & Slafer, G.A. (2010). Co-limitation of nitrogen and water on yield and resource-use efficiencies of wheat and barley. Crop Past. Sci. 61, 844-851.

Eberbach, P., Pala, M. (2005). Crop row spacing and its influence on the partitioning of evapotranspiration by winter-grown wheat in Northern Syria. Plant Soil, 268, 195-208. doi:10.1007/s11104-004-0271-y

Foulkes, M.J., Slafer, G.A., Davies, W.J., Berry, P.M., Sylvester-Bradley, R., Martre, P., Calderini, D.F., Griffiths, S. & Reynolds, M.P. (2011). Raising yield potential of wheat. III. Optimizing partitioning to grain while maintaining lodging resistance. J. Exp. Bot. 62, 469-486, doi:10.1093/jxb/erq300.

Grunwald, L.-Ch., Meinel, T., Fruhauf, M., Belyaev, V.I. (2015). Effekte der Schwarzbrache in verschiedenen Trocken-feldbauregionen der GUS. Hallesches Jahrbuch für Geowissenschaften, 37, 163–193.

Hochman, Z., Holzworth, D. & Hunt, J.R. (2009). Potential to improve on-farm wheat yield and WUE in Australia. Crop & Pasture Science 60, 708-716, doi:10.1071/cp09064.

Liang, W, Carberry, P., Wang, G., Lü, R., Lü, H. & Xia, A. (2011). Quantifying the yield gap in wheat-maize cropping systems of the Hebei Plain, China. Field Crops Res. 124, 180-185, doi:10.1016/j.fcr.2011.07.010.

Licker, R., Johnston, M., Foley, J.A., Barford, C., Kucharik, C.J., Monfreda, C. & Ramankutty, N. (2010). Mind the gap: how do climate and agricultural management explain the 'yield gap' of croplands around the world? Global Ecology and Biogeography 19, 769-782, doi:10.1111/j.1466-8238.2010.00563.x.

Lobell, D.B., Cassman, K.G. & Field, C.B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Ann. Revi. Environ. Res. 34, 179-204, doi:doi:10.1146/annurev.environ.041008.093740.

Malik, A.U., Ahmad, M.H., Bukhsh, H.A., Hussain, I. (2009). Effect of seed rates sown on different dates on wheat under agroecological conditions of Dera Ghazi Khan. The Journal of Animal & Plant Sciences 19(3), 126-129

Monfreda, C., Ramankutty, N. & Foley, J.A. (2008). Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22, doi:10.1029/2007gb002947.

Naresh, R.K., Tomar, S.S., Purushottam, S.P. Kumar, S.D., Pratap, B., Kumar, V., Nanher, A.H. (2012). Testing and evaluation of planting methods on wheat grain yield and yield contributing parameters in irrigated agro-ecosystem of western Uttar Pradesh, India. African Journal of Agricultural Research, 9(1), 176-182, doi: 10.5897/AJAR2012.0027

Ortiz-Ferrara, G., Joshi, A.K., Chand, R., Bhatta, M.R., Mudwari, A., Thapa, D.B., Suwan, M.A., Saikia, T.P., Chatrath, R., Witcombe, J.R., Virk, D.S. and Sharma, R.C. (2007) Partnering with farmers to accelerate adoption of new technologies in South Asia to improve wheat productivity. Euphytica, 157, 399-407. doi:10.1007/s10681-007-9353-2

Oyewole C.I., Attah, E.S. (2007). Effects of sowing method and pest infestation on the performance of two wheat (Triticum aestivum L) varieties in the Sudan savanna agro-ecological zone of Nigeria. Savanna J. Sci. Agric, 4, 28-35.

Pandey, B.P., Basnet, K.B., Bhatta, M.R., Sah, S.K., Thapa, R.B., Kandel, T.P. (2013). Effect of row spacing and direction of sowing on yield and yield attributing characters of wheat cultivated in Western Chitwan, Nepal. Agricultural Sciences, 4(7), 309–316, http://dx.doi.org/10.4236/as.2013.47044

Parry, M.A.J., Reynolds, M.P., Salvucci, M.E., Raines, C., Andralojc, P.J., Xin-Guang Zhu, Price, G.D., Condon, A.G. & Furbank, R.T. (2011). Raising yield potential of wheat. II. Increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62, 453-467, doi:10.1093/jxb/erq304.

Potgieter, A., Meinke, H., Doherty, A., Sadras, V.O., Hammer, G., Crimp, S. & Rodriguez, D. (2013). Spatial impact of projected changes in rainfall and temperature on wheat yields in Australia. Climatic Change 117, 163–179, doi:10.1007/s10584-012-0543-0.

Sadras, V.O., Angus, J.F. (2006). Benchmarking water use efficiency of rainfed wheat in dry environments. Aust. J. Agric. Res. 57, 847-856.

Shah, W.A., Bakht, J., Ullah, T., Khan, A.W., Zubair, M., Khakwani, A.A. (2006). Effect of sowing dates on the yield and yield components of different wheat varieties. J. Agron., 5(1), 106-110

Sharma, R.C., Ortiz-Ferrara, G., Crossa, J., Bhatta, M.R., Sufian, M.A., Shoran, J., Joshi, A.K., Chand, R., Singh, G., Ortiz, R. (2007) Wheat grain yield and stability assessed through regional trials in the Eastern Gangetic Plains of South Asia. Euphytica, 157, 457-464, doi:10.1007/s10681-007-9470-y

Soltani, A., Hoogenboom, G. (2007). Assessing crop management options with crop simulation models based on generated weather data. Field Crops Res. 103, 198-207, doi:10.1016/j.fcr.2007.06.003.

Steduto, P., Hsiao, T.C., Raes, D., Fereres, E. (2009). AquaCrop--The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agron. J. 101, 426-437, doi:10.2134/agronj2008.0139s.

Zwart, S.J., Bastiaanssen, W.G.M., de Fraiture, C., Molden, D.J. (2010). WATPRO: A remote sensing based model for mapping water productivity of wheat. Agric Water Manag 97, 1628-1636, doi:10.1016/j.agwat.2010.05.017.

Zwart, S.J., Bastiaanssen, W.G.M. (2004). Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agric Water Manage, 69, 115–133

DOI: http://dx.doi.org/10.15421/2017_30

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138