Ecology of soil algae cenoses in Norway maple plantation in the recultivated territory of the Western Donbas (Ukraine)

O.A. Didur, Yu.L. Yu.L. Kulbachko, Ye.І. Maltsev, T.V. Konovalenko


The problem of the degradation of land ecosystems and their underlying basis – the soil – has a global character. In some regions of Ukraine, such as the Western Donbass, it becomes particularly topical. The damaged areas formed during coal mining are restored through reclamation. One of its directions is forest reclamation. Soil algae constitute an active autotrophic part of the microbiota. They are connected with all its autotrophic, heterotrophic components and with the soil. They play a great role in the accumulation and transformation of organic matter, contributing to the creation of soil fertility. This explains the importance of algae in the process of restoration of damaged soils. Algae participate in the formation of primary products for primary consumers of such soil saprophages as two-bipartite petioles, woodlice, earthworms, collembola, oribatei. These animals act as a natural soil-protecting biological factor, as well as the factor of naturalization of soils in the restoration of damaged areas. They cause redistribution of algae communities composition as a result of their selective eating, thus affecting the number of their communities. The selection of soil samples and forest litter has been carried out in the plantations of Norway maple in the experimental-production site of forest reclamation in the territory of the Western Donbas (Ukraine). The structure of the domination of algae complexes, the vital forms of the representatives of the coenoses of soil algae in the plantation of Acer platanoides L. on various stratigraphic variants of piled edaphotopes – on a variant with a potentially fertile terrain (non-humous loess loam) and on several chernozem variants with different stratigraphy has been studied. The representatives of green algae (Chlorophyta) predominate in the investigated re-cultivated area in the plantations of Norway maple. The participation of green algae in the composition of soil algae groupings shows the sylvatizative role of the tree plantations in the restored territories. In the plantations of Norway maple on the various stratigraphic variants of piled edaphotopes, an increase in the number of species from 8 in the area with the fill of loess loam up to 15 in a chernozem variant with a half-meter layer of sand has been noted. In general, for maple plantations on chernozem fills, a larger number of species (from 10 to 15) has been observed compared to the maple plantation on the loess loam fill. On the one hand, the small species variety indicates very rough conditions for the existence of soil algae flora, on the other hand, the appearance and occurring of species characteristic of forest ecosystems, indicates the processes of their naturalization in the re-cultivated territories.


environment rehabilitation;forest recultivation;artificial edaphotopes;ecosystem services;Norway maple;soil algae

Full Text:



Benbrahim, K.F., Ismaili, M., Benbrahim, S.F. & Tribak A. (2004). Land degradation by desertification and deforestation in Morocco. Sécheresse, 15(4), 307–320.

Chakravarty, S., Ghosh, S.K., Suresh, С.Р., Dey, A.N. & Shukla G. (2012). Deforestation: causes, effects and control strategies. In: Global Perspectives on Sustainable Forest Management, Dr. Dr. Clement A. Okia (Ed.), InTech, doi: 10.5772/33342

Chibrik, T.S., Lukina, N.V., Filimonova, E.I., Glazyrina, M.A., Rakov, E.A., Maleva, M.G. & Prasad, M.N.V. (2016). Biological reclamation of mine industry deserts: Facilitating the formation of phytocoenosis in the middle Ural region, Russia (pp. 349-418). In: Prasad, M.N.V. (Ed). Bioremediation and Bioeconomy. Elsevier. doi:

Crispim, C.A. & Gaylarde, C.C. (2004). Cyanobacteria and biodeterioration of cultural heritage: a review. Microbial Ecology, 49(1), 1–9. doi: 10.1007/s00248-003-1052-5

Crispim, C.A., Gaylarde, C.C. & Gaylarde, P.M. (2004). Biofilms on church walls in Porto Alegre, RS, Brazil, with special attention to cyanobacteria. International Biodeterior & Biodegradation, 54, 121–124. doi:

Crispim, C.A., Gaylarde, P.M. & Gaylarde, C.C. (2003). Algal and cyanobacterial biofilms on calcareous historic buildings. Current Microbiology, 46(2), 79–82. doi: 10.1007/s00284-002-3815-5

Dubovik, I.E. (1995). Vodorosli erodirovannyh pochv i algologicheskaia otsenka pochvozashitnyh meropriiatii [Algae of eroded soils and algological evaluation of soil-protection measures]. Publ. Bashkir State University, Ufa (In Russian).

Faly, L.I., Kolombar, T.M., Prokopenko, E.V., Pakhomov, O.Y. & Brygadyrenko, V.V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38. doi: 10.15421/011705

Gaylarde, P.M. & Gaylarde, C.C. (2000). Algae and cyanobacteria on painted buildings in Latin America. International Biodeterior & Biodegradation, 46(2), 93–97. doi: 10.1016/S0964-8305(00)00074-3

Gollerbah, M.M. & Shtina, E. A. (1969). Pochvennyie vodorosli [Soil algae]. Nauka, Leningrad. (In Russian).

Hallmann, C., Rüdrich, J., Enseleit, M., Friedl, T. & Hoppert, M. (2011). Microbial diversity on a marble monument-a case study. Environmental Earth Sciences, 63(7–8), 1701–1711. doi:

Ibarra, J.M.N. & de las Heras M.M. (2005). Open-Cast Mining Reclamation (pp. 370-376). In: Forest Restoration in Landscapes: Beyond Planting Trees. Mansourian, S.,

Vallauri, D., Dudley, N. (Eds.). In cooperation with WWF International, Springer, New York.

Karsten, U., Schumann, R. & Mostaert, A. (2007). Aeroland algae growing on man-made surfaces. In: Seckbach J. (eds). Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. doi:

Klymenko, G., Kovalenko, I., Lykholat, Y., Khromykh, N., Didur, O. & Alekseeva, A. (2017). The integral assessment of the rare plant populations. Ukrainian Journal of Ecology, 7(2), 201–209. doi: 10.15421/2017_37

Kostikov, I.Iu., Romanenko, P.O., Demchenko, E.M., Dariienko, T.M., Mykhailiuk, T.I., Rybchynskyi, O.V., Solonenko, A.M. (2001). Vodorosti gruntiv Ukrainy (istoriia ta metody doslidzhennia, systema, konspekt flory) [Soil algae of Ukraine (history and methods of research, system, checklist of flora)]. Fitosotsiotsentr, Kyiv.

Kul’bachko, Y., Loza, I., Pakhomov, O., Didur, O. (2011). The Zooecological Remediation of Technogen Faulted Soil in the Industrial Region of the Ukraine Steppe Zone (pp. 115-123). In: Behnassi, M., Shahid, S., D'Silva, J. (Eds). Sustainable Agricultural Development. Springer, Dordrecht. doi:

Kul’bachko, Y.L., Didur, O.O., Loza, I.M., Pakhomov, O.E. & Bezrodnova, O.V. (2015). Environmental aspects of the effect of earthworm (Lumbricidae, Oligochaeta) tropho-metabolic activity on the pH buffering capacity of remediated soil (steppe zone, Ukraine). Biology Bulletin, 42(10), 899–904. doi:

Kuzyahmetov, G.G. & Dubovik, I.E. (2001). Metody izucheniia pochvennyh vodorosley [Methods for studying soil algae]. Publ. Bashkir State University, Ufa (In Russian).

Lykholat, T., Lykholat, O. & Antonyuk, S. (2016). Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. Cytology and Genetics, 50 (1), 32–41. doi:

Lykholat, Y.V., Khromykh, N.A., Ivan’ko, I.A., Matyukha, V.L., Kravets, S.S., Didur, O.O., Alexeyeva, A.A. & Shupranova, L.V. (2017). Otsinka i prohnoz invaziinosti deiakykh adventyvnykh roslyn za vplyvu klimatychnykh zmin u Stepovomu Prydniprov’i [Assessment and prediction of the invasiveness of some alien plants in conditions of climate change in the steppe Dnieper region]. Biosystems Diversity, 25(1), 52–59. doi: 10.15421/011708

Maltsev, E.I. (2013). Ekolohichni osoblyvosti alhouhrupovan lisovykh pidstylok zaplavnykh dibrov stepovoi zony Ukrainy [Ecological features of algae groupings in forest litter of floodplain oak woods in steppe area of Ukraine]. Gruntoznavstvo, 14(1–2), 70–77. (In Ukrainian).

Maltsev, E.I. (2015). Vliyanie raznyih shtammov roda Nostoc Vaucher ex Bornet et Flahault na rost i razvitie Pisum sativum L. [The influence of Nostoc Vaucher ex Bornet et Flahault strains on growth and development of Pisum sativum L.]. Ukrainian Journal of Ecology, 5(3), 148–154. doi: 10.7905/bbmspu.v5i3.993

Maltsev, Y.I. & Konovalenko, T.V. (2017). New finding of green algae with potential for algal biotechnology, Chlorococcum oleofaciens and its molecular investigation. Regulatory Mechanisms in Biosystems, 8(4), 532–539. doi: 10.15421/021782

Maltsev, Y.I., Didovich, S.V. & Maltseva, I.A. (2017a). Seasonal changes in the communities of microorganisms and algae in the litters of tree plantations in the Steppe zone. Eurasian Soil Science, 50(8), 935–942. doi: 10.1134/S106422931706005

Maltsev, Y.I., Maltseva, I.A., Solonenko, A.N. & Bren, A.G. (2017b). Use of soil biota in the assessment of the ecological potential of urban soils. Biosystems Diversity, 25(4), 257–262. doi: 10.15421/011739

Maltsev, Y.I., Pakhomov, A.Y. & Maltseva, I.A. (2017c). Specific features of algal communities in forest litter of forest biogeocenoses of the Steppe zone. Contemporary Problems of Ecology, 10(1), 71–76. doi: 10.1134/S1995425517010085

Maltseva, I.A. & Cherevko, S.P. (1994). Gruntovi vodorosti rekultyvovanykh zemel Prysamar’ia Dniprovskoho (Ukraina) [Soil algae of the reclaimed lands in Prisamarie Dniprovske (Ukraine)]. Ukrainian Botanical Journal, 51(2/3), 144–148. (In Ukrainian).

Maltseva, I.A. & Baranova, O.O. (2014). Vodorosli tehnogennyh ekotopov zhelezorudnogo proizvodstva [Algae of technogenic ecotopes of iron-ore industry]. Algologiia, 24(3), 350–353. (In Russian).

Maltseva, I.A. & Chayka, N.I. (2011). Pochvennyie vodorosli otvala ugolnoy shahty Donetskoi oblasti [Soil algae of the coal mine in Donetsk region]. Biological Bulletin of Bogdan Khmelnitskiy Melitopol State Pedagogical University, 1(3), 45–54. (In Russian).

Maltseva, I.A. & Posrednikova, A.V. (2011). Vyvchennia alhoflory derevnykh nasadzhen rekultyvovanoho vuhilnoho vidvalu shakhty Sviato-Serafimivska (Donetska oblast) [The algae flora investigation within tree plantations of the reclaimed coal dump of Svyato-Serafimivska mine (Donetsk region)]. Chornomorskyi Botanical Journal, 7(2), 187–193. (In Ukrainian).

Maltseva, I.A. (1996). Pochvennyie vodorosli lesnyih nasazhdeniy na rekultivirovannyih shahtnyih otvalah Zapadnogo Donbassa [Soil algae of forest plantations on reclaimed mine dumps of Western Donbas]. Ekologiia ta noosferologiia, 2(3–4), 129–133. (In Russian).

Maltseva, I.A. (2006). Riznomanittia gruntovykh vodorostei lisovykh rekultyvatsiinykh ekosystem pivdnia Ukrainy [Variety of soil algae of forest reclaimed ecosystems in the South of Ukraine]. Ekologiia ta noosferologiia, 17(1–2), 46–50. (In Ukrainian).

Maltseva, I.A. (2007). Gruntovi vodorosti u funktsionalnii strukturi bioheotsenoziv [Soil algae in the functional structure of biogeocoenoses]. Gruntoznavstvo, 8(3–4), 71–79. (In Ukrainian).

Maltseva, I.A., Adamenko, Yu.P., Dzhoglo, T.I., Pysanets, Z.G. & Maltsev Ye.I. (2008). Vplyv nadlyshku pliumbumu i kuprumu na gruntovi vodorosti [Influence of lead and copper surplus on the soil algae]. Ekologiya ta noosferologiya, 19(1–2), 134–137. (In Ukrainian).

Maltseva, I.A., Baranova, O.O. & Maltsev, E.I. (2009). Alhouhrupovannia bioheotsenoziv landshaftno-tekhnohennykh system Kryvorizhzhia [Algae groupings of biogeocoenoses of landscape-technogenic systems of Kryvorizhia]. Visnyk Zaporizkoho derzhavnoho universytetu, 2, 20–23. (In Ukrainian).

Maltseva, I.A., Kotok, I.A. & Pasko, K.S. (2006). Doslidzhennia gruntovoi alhoflory rekultyvatsiinykh lisovykh nasadzhen [The investigation of soil algae flora of reclaimed forest plantations]. Journal of Kharkiv National Agrarian University, Series Biology, 1, 128–134. (In Ukrainian).

Maltseva, I.A., Maltsev, Y.I. & Solonenko, A.N. (2017). Soil Algae of the Oak Groves of the Steppe Zone of Ukraine. International Journal on Algae, 19(3), 215–226. doi: 10.1615/InterJAlgae.v19.i3.20

Mbaya, R.P. (2013). Land degradation due to mining: the gunda scenario. International Journal of Geography and Geology, 2(12): 144–158. doi: 10.18488/journal.10/2013.2.12/

Rindi, F. & Guiry, M.D. (2004). Composition and spatial variability of land algal assemblages occurring at the bases of urban walls in Europe. Phycologia, 43(3), 225–235. doi:

Rindi, F. (2007) Diversity, distribution and ecology of Green Algae and Cyanobacteria in urban habitats. In: Seckbach J. (eds) Algae and Cyanobacteria in Extreme Environments. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 11. Springer, Dordrecht. doi:

Scherbina, V.V., Maltseva, I.A. & Solonenko, A.N. (2014). Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova Biospheric National Park. Contemporary problems of ecology, 7(2), 187–191. doi:

Shcherbyna, V.V., Maltseva, I.A., Maltsev, Y.I. & Solonenko, A.N. (2017). Post-pyrogenic changes in vegetation cover and biological soil crust in steppe ecosystems. Regulatory Mechanisms in Biosystems, 25(4), 633–638. doi: 10.15421/011797

Shekhovtseva, O.G. & Maltseva, I.A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400. doi:

Shtina, E.A. & Gollerbah, M.M. (1976). Ekologiia pochvennyh vodorosley [Ecology of soil algae]. Nauka, Moscow. (In Russian).

Sirenko, L.A. & Kondrateva, N.V. (1999). Rol Cyanophyta v prirode (obzor) [The role of Cyanophyta in the nature (review)]. Algologiia, 3(1), 1–15. (In Russian).

Uher, B., Aboal, M. & Kovacik, L. (2005). Epilithic and chasmoendolithic phycoflora of monuments and buildings in South-Eastern Spain. Cryptogamie Algologie, 26(3), 275–308.

Yarovyi, S.O., Arabadzhi, L.I., Solonenko, A.M., Bren, O.G., Maltsev, Y.I. & Matsyura, A.V. (2017). Diversity of Cyanoprokaryota in sandy habitats in Pryazov National Natural Park (Ukraine). Ukrainian Journal of Ecology, 7(2), 91–95. doi: 10.15421/2017_24


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138