Antifungal activity of several isolates of Trichoderma against Cladosporium and Botrytis

M. Skaptsov, S. Smirnov, M. Kutsev, O. Uvarova, T. Sinitsyna, A. Shmakov, A. Matsyura

Abstract


Trichoderma isolates (SSBGT07, SSBGT08, SSBGT09, SSBGT10) were isolated from the soil samples of the South-Siberian Botanical Garden and identified using morphological observation and ITS region analysis as Trichoderma harzianumT. asperellum, T. ghanense, and T. longibranchiatum. Antagonistic activity against Cladosporium sp. and Botrytis sp. was evaluated in vitro. All isolates showed antagonistic effect by competition against Cladosporium sp. T. asperellum and T. longibranchiatum showed antagonism against Botrytis sp. All isolates showed hyper sporulation on the sclerotia of Botrytis sp. (except the T. ghanense) and colonies of the Cladosporium sp. Our study provides new isolates that affect the Cladosporium sp. and Botrytis sp.


Keywords


antifungal activity; Botrytis; Cladosporium; fungi; PCR; Trichoderma

Full Text:

PDF

References


Belete, E., Ayalew, A., Ahmed, S. (2015). Evaluation of local isolates of Trichoderma spp. against black root rot (Fusarium solani) on Faba bean. J. Plant Pathol. Microb., 6, 279. doi:10.4172/2157-7471.1000279

Druzhinina, I.S., Kopchinskiy, A.G., Kubicek, C.P. (2006). The first 100 Trichoderma species characterized by molecular data. Mycoscience, 47, 55-64. doi: 10.1007/s10267-006-0279-7

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res., 32(5), 1792-1797. doi: 10.1093/nar/gkh340

Hoseinzadeh, S., Shahabivand, S., Aliloo, A.A. (2017). Toxic metals accumulation in Trichoderma asperellum and T. harzianum. Microbiology, 86(6), 728-736. doi: 10.1134/S0026261717060066

Huelsenbeck, J.P., Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17(8), 754-755. doi: 10.1093/bioinformatics/17.8.754.

Mendoza, J.L., Pérez, M.I., Prieto, J.M., Velásquez, J.D., Olivares, J.G., Langarica, H.R. (2015). Antibiosis of Trichoderma spp. strains native to northeastern Mexico against the pathogenic fungus Macrophomina phaseolina. Brazilian Journal of Microbiology, 46(4), 1093-1101. doi: 10.1590/S1517-838246420120177.

Mukherjee, P.K., Verma, A., Latha, J. (2002). PCR fingerprinting of some Trichoderma isolates from two Indian type culture collection a need for re-identification of these economically importance fungi. Sci Corres., 83, 372-374.

Rios Velasco, C., Caro Cisneros, J.M., Berlanga Reyes, D.I., Ruiz Cisneros, M.F., Ornelas Paz, J.J., Salas Marina, M.Á., Guerrero Prieto, V.M. (2016). Identification and antagonistic activity in vitro of Bacillus spp. and Trichoderma spp. isolates against common phytopathogenic fungi. Rev. mexic. fitopatol., 34(1), 84-99. doi: 10.18781/R.MEX.FIT.1507-1.

Saba, H., Vibhash, D., Manisha, M., Prashant, K.S., Farhan, H., Tauseef, A. (2012). Trichoderma – a promising plant growth stimulator and biocontrol agent, Mycosphere, 3(4), 55-64. doi: 10.5943/mycosphere/3/4/14.

Shahid, M., Srivastava, M., Singh, A., Kumar, V., Rastogi, S., Pathak, N., Srivastava, A.K. (2014). Comparative study of biological agents, Trichoderma harzianum (Th-Azad) and Trichoderma viride (01PP) for controlling wilt disease in pigeon pea. J. Microb. Biochem. Technol., 6, 110-115. doi: 10.4172/1948-5948.1000130.

Sharma, B.L., Singh, S.P., Sharma, M.L. (2012). Bio-degradation of crop residues by Trichoderma species vis-à vis nutrient quality of the prepared compost. Sugar Tech., 14, 174-180. doi: 10.1007/s12355-011-0125-x.

Thanh, N.T., Nhung, H.T., Thuy, N.T., Lam, T.T., Giang, P.T., Lan, T.N., Viet N.V., Man V.T. (2014). The diversity and antagonistic ability of Trichoderma spp. on the Aspergillus flavus pathogen on peanuts in north center of Vietnam. World J. Agric. Res., 2(6), 291-295. doi: 10.12691/wjar-2-6-8.

White, T.J., Bruns, T., Lee, S., Taylor, J. (1990). Amplification and direct sequencing of fungi ribosomal RNA genes for phylogenetics. In M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White (Eds.), PCR Protocols. A Guide to Methods and Applications (pp. 315-322). San Diego: Academic Press.

Zeilinger, S., Omann, M. (2007). Trichoderma biocontrol: signal transduction pathways involved in host sensing and mycoparasitism. Gene Reg. Syst. Biol., 1, 227-234.




DOI: http://dx.doi.org/10.15421/2018_191

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138