A review of lignocellulosic biochar modification towards enhanced biochar selectivity and adsorption capacity of potentially toxic elements

V. Chemerys, E. Baltrėnaitė


Biochar, which is rich in aromatic carbon and minerals, is a product of biomass pyrolysis at temperatures ranging from 350°C to 1000°C in oxygen-limited environments. In recent years biochar has generated much interest in the field of water treatment in view of low production costs, availability of the feedstock (e.g. lignocellulosic biomass waste) and adsorptive properties. This review incorporates researches on artificial and natural modifications of biochar towards adsorption of potentially toxic elements on biochar. The aim of this study was to provide a comprehensive review of recent research findings and theory developments on the existing modifications of biochar for adsorption of potentially toxic elements (i.e. inorganic compounds) from aqueous solutions. Factors affecting adsorption of potentially toxic elements by lignocellulosic biochar and modification techniques for lignocellulosic biochar towards enhanced adsorption of potentially toxic elements were analyzed. The novelty of this study is discussion of the natural modifications of biochar and smart properties of biochar towards adsorption of potentially toxic elements. Recommendations are offered for modifying the lignocellulosic biochar to produce designed, engineered or smart biochar with  high adsorption capacity for potentially toxic elements.


engineered biochar; adsorption; lignocellulosic biomass; pyrolysis

Full Text:



Agrafioti, E., Kalderis, D., Diamadopoulos, E. (2014). Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. J. Environ. Manage. 146, 444.

Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S. (2014). Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19.

Akhtar, J., and Amin, N. S. (2012). A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. and Sustainable Energy Rev. 16 (7), 5101.

Azargohar, R., and Dalai, A.K. (2006). Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 131 (1-3), 762.

Baltrėnaitė, E., Baltrėnas, P., Lietuvninkas, A. (2016a). The sustainable role of the tree in environmental protection technologies. Dordrecht: Springer International Publishing.

Baltrėnaitė, E., Lietuvninkas, A., Baltrėnas, P. (2016b). Modelling the Balance of Metals in the Amended Soil for the Case of "Atmosphere–Plant–Soil" System. Environ. Model. Assess., 1.

Baltrėnas, P., Baltrėnaitė, E., Spudulis, E. (2015). Biochar from Pine and Birch Morphology and Pore Structure Change by Treatment in Biofilter. Water Air Soil Pollut. 226 (3), 1.

Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol., 102 (19), 8877-8884.

Dong, X., Ma, L.Q., Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 190 (1), 909.

Fristak, V., Moreno-Jimenez, E., Micháleková-Richveisová, B., Schmidt, H. P., Bucheli, T., & Soja, G. (2016, April). Sorption interactions of biochars and pyrogenic carbonaceous materials with anionic contaminants. In EGU General Assembly Conference Abstracts (Vol. 18, p. 1281).

Gupta, P., Vermani, K., & Garg, S. (2002). Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today, 7(10), 569-579.

Hu, X., Ding, Z., Zimmerman, A.R., Wang, S., Gao, B. (2015). Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis. Water Res. 68, 206.

Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A.R., Pullammanappallil, P., Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresour. Technol. 110, 50.

Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., Cao, X. (2015). Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars. Environ. Sci. Pollut. R. 22 (3), 1868.

Isikgor, F. H., and Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem. 6 (25), 4497.

Jing, X.R., Wang, Y.Y., Liu, W.J., Wang, Y.K., Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J. 248, 168.

Jirka, S., and Tomlinson, T. (2013). State of the Biochar Industry—A survey of commercial activity in the biochar field. A report by the International Biochar Initiative. Available at: www. biochar-international. org/sites/default/files/State_of_the_Biochar_Industry_2013.pdf.

Jones, D.L., and Quilliam, R.S. (2014). Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application. J. Hazard. Mater. 276, 362.

Kan, T., Strezov, V., Evans, T. J. (2016). Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters. Renew. and Sustainable Energy Rev. 57, 1126.

Karthikeyan, T., Rajgopal, S., Miranda, L.R. (2005). Chromium (VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon. J. Hazard. Mater. 124 (1), 192.

Kılıç, M., Kırbıyık, Ç., Çepelioğullar, Ö., & Pütün, A. E. (2013). Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. Appl. Surf. Sci., 283, 856-862.

Komkiene, J., and Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium (II), Copper (II), Lead (II), Zinc (II)] from aqueous phase. Int. J. Environ. Sci. Te. 13 (2), 471.

Kozlowski, T. T., Pallardy, S. G., Pospisilova, J. (1997). Physiology of Woody Plants. 2nd edition. San Diego: Academic Press.

Li, J.H., Lv, G.H., Bai, W.B., Liu, Q., Zhang, Y.C., Song, J.Q. (2014). Modification and use of biochar from wheat straw (Triticum aestivum L.) for nitrate and phosphate removal from water. Desalination Water Treat., 1.

Lima, I.M., Boateng, A.A., Klasson, K.T. (2010). Physicochemical and adsorptive properties of fast‐pyrolysis bio‐chars and their steam activated counterparts. J. Chem. Technol. Biotechnol. 85 (11), 1515.

Liu, P., Liu, W.J., Jiang, H., Chen, J.J., Li, W.W., Yu, H.Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 121, 235.

Mancinelli, E., Baltrėnaitė, E., Baltrėnas, P., Paliulis, D., Passerini, G., Almås, Å.R. (2015). Trace metal concentration and speciation in storm water runoff on impervious surfaces. J. Environ. Eng. Landsc. 23 (1), 15.

Mitchell, P. J., Dalley, T. S., Helleur, R. J. (2013). Preliminary laboratory production and characterization of biochars from lignocellulosic municipal waste. J. Anal. Appl. Pyrolysis 99, 71.

Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., Pittman, C.U. (2014b). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chem. Eng. J. 236, 513.

Mohan, D., Pittman, C. U., Bricka, M., Smith, F., Yancey, B., Mohammad, J., ... & Gong, H. (2007). Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. J Colloid Interface Sci, 310(1), 57-73.

Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U. (2014a). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresour. Technol. 160, 191.

Mohan, D., and Singh, K. P. (2002). Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res, 36 (9), 2304-2318.

Nanda, S., Mohanty, P., Pant, K. K., Naik, S., Kozinski, J. A., Dalai, A. K. (2013). Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6 (2), 663.

Nartey, O.D., and Zhao, B. (2014). Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview. Adv. Mater. Sci. Eng. 2014.

Novak, J.M., Cantrell, K.B., Watts, D.W., Busscher, W.J., Johnson, M.G. (2014). Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. J. Soils Sediments 14 (2), 330-343.

Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. AES 3, 195.

Ok, Y.S., Chang, S.X., Gao, B., Chung, H.J. (2015). SMART biochar technology—a shifting paradigm towards advanced materials and healthcare research. Environ. Technol. 4, 206.

Otsuka, K., & Wayman, C. M. (1999). Shape memory materials. Cambridge university press.

Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., & Gidarakos, E. (2012). Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. J. Environ. Manage., 96(1), 35-42.

Qiu, Y., & Park, K. (2001). Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev, 53(3), 321-339.

Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang, M., Vithanage, M., Mandal, S., Gao, B., Bolan, N.S., Ok, Y.S. (2016). Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148, 276.

Regmi, P., Moscoso, J.L.G., Kumar, S., Cao, X., Mao, J., Schafran, G. (2012). Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J. Environ. Manage. 109, 61.

Rutherford, D. W., Wershaw, R. L., Rostad, C. E., Kelly, C. N. (2012). Effect of formation conditions on biochars: Compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46, 693.

Samsuri, A.W., Sadegh-Zadeh, F., Seh-Bardan, B.J. (2014). Characterization of biochars produced from oil palm and rice husks and their adsorption capacities for heavy metals. Int. J. Environ. Sci. Te. 11 (4), 967.

Samsuri, A.W., Sadegh-Zadeh, F., Seh-Bardan, B.J. (2013). Adsorption of As (III) and As (V) by Fe coated biochars and biochars produced from empty fruit bunch and rice husk. J. Environ. Eng. 1 (4), 981.

Shuping, Z., Yulong, W., Mingde, Y., Chun, L., Junmao, T. (2010). Pyrolysis characteristics and kinetics of the marine microalgae Dunaliella tertiolecta using thermogravimetric analyzer. Bioresour. Technol. 101 (1),359.

Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A., Lappas, A. A. (2014). A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 105, 143.

Suguihiro, T. M., de Oliveira, P. R., de Rezende, E. I. P., Mangrich, A. S., Junior, L. H. M., & Bergamini, M. F. (2013). An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for lead and cadmium determination. Bioresour. Technol. 143, 40-45.

Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., Yang, L. (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 240, 574.

Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z. (2015). Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125, 70.

Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renew. Sust. Energ. Rev., 55, 467-481.

Tsai, W. T., Chang, C. V., Lee S. (1997). Preparation and characterization of activated carbons from corn cob. Carbon 35, 1198–2000.

Vassilev, S. V., Baxter, D., Andersen, L. K., Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel 89 (5), 913.

Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., Migliaccio, K.W. (2015). Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour. Technol. 175, 391.

Wang, S., Guo, X., Wang, K., Luo, Z. (2011). Influence of the interaction of components on the pyrolysis behavior of biomass. J. Anal. Appl. Pyrolysis 91 (1), 183.

White, J. E., Catallo, W. J., Legendre, B. L. (2011). Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis 91 (1), 1.

Williams, P. T., and Horne, P. A. (1994). The role of metal salts in the pyrolysis of biomass. Renew. Energy 4 (1), 1.

Wu, F.C., Tseng, R.L., Juang, R.S. (2009). Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics. Chem. Eng. J. 153 (1), 1.

Wu, Y., Zhang, S., Guo, X., & Huang, H. (2008). Adsorption of chromium (III) on lignin. Bioresour. Technol. 99(16), 7709-7715.

Xiong, Z., Shihong, Z., Haiping, Y., Tao, S., Yingquan, C., Hanping, C. (2013). Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenerg. Res. 6, 1147-1153.

Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environ. Sci. Pollut. Res. 20 (1), 358.

Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A. R., Ro, K. S. (2012). Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: batch and column tests. Chem. Eng. J. 200, 673.

Yang, G.X., and Jiang, H. (2014). Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res. 48, 396.

Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., Yang, L. (2013). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. Bioresour. Technol. 138, 8.

Yoshida, T., Lai, T. C., Kwon, G. S., & Sako, K. (2013). pH-and ion-sensitive polymers for drug delivery. Expert Opin Drug Deliv, 10(11), 1497-1513.

Yun, J., Im Ji, S., Lee, Y. S., & Kim, H. I. (2009). Controlled release behavior of ph-responsive composite hydrogel containing activated carbon. Carbon Lett, 10(1), 33-37.

Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., Inyang, M. (2013). Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 130, 457.

Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chem. Eng. J. 210, 26.

Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z. (2011). Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2 atmospheres. Bioresour. Technol. 102 (5), 4258.

Zheng, R. L., Cai, C., Liang, J. H., Huang, Q., Chen, Z., Huang, Y. Z., ... & Sun, G. X. (2012). The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere, 89 (7), 856-862.

Zheng, R., Chen, Z., Cai, C., Tie, B., Liu, X., Reid, B.J., Huang, Q., Lei, M., Sun, G., Baltrėnaitė, E. (2015). Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environ. Sci. Pollut. Res. 22 (14), 11097.

Zhou, Y., Gao, B., Zimmerman, A.R., Fang, J., Sun, Y., Cao, X. (2013). Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chem. Eng. J. 231, 512.

DOI: http://dx.doi.org/10.15421/2018_183

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.

Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138