The study of morphological and cultural properties of Sparassis crispa (Sparassidaceae, Polyporales)

O. B. Mykchaylova, A. P. Gryganskyi, M. L. Lomberg, N. A. Bisko


A verification of Sparassis crispa (Wulfen) Fr. strains of the IBK Mushroom Culture Collection using molecular-genetic and cultural-morphological methods were done. For all S. crispa strains a complete determination of the nucleotide sequences of the internal transcribed spacer: ITS1, 5.8S and ITS2 regions of rRNA, as well as the partial determination of 18S and 28S sequences surrounding the ITS, was performed. As a result of the search in the gene bank, the S. crispa samples deposited there showed 99-98% identity with the sequences we received, thus confirming the species of the examined strains. On the basis of the sequences we received, investigated strains were registered in NCBI GenBank. To confirm the taxonomic affiliation of the strains we studied their cultural and morphological characteristics. Microstructures of vegetative mycelium by optical and scanning electron microscopy were investigated. In all S. crispa cultures we observed the hyphae with regular one-sided gapless clamp connections, numerous secretory cells on the surface of the hyphae, anastomoses, filamentous strands and films. We studied the growth rate and morphology of the strains on seven agar nutrient media. According to the radial growth rate of S. crispa cultures can be placed to the very slowly growing mushrooms, growth rate of 0,5−2,8 mm/day. We found the selective media such as malt agar with the addition of pine sawdust (SS) and larch sawdust (SM) as most favorable for the vegetative growth and generative stage for all strains, temperature of incubation was 26 ± 0.1 °C. For mycelial growth the critical temperature was 39 ± 0.1 °C for S. crispa strains 312, 314 and 40 ± 0.1 °C for the strains 304, 2004. We confirmed belonging of studied strains to S. сrispa species according to established morphological and cultural characteristics. This result coincided with the results of DNA typing. Thus, the obtained mycelium growth parameters on nutrient media, micro- and macromorphological characteristics can be used as additional taxonomic characteristics of S. сrispa culture in the vegetative stage of growth. The strain S. сrispa 314 may become a potential producer for new fungal biotechnologies in Ukraine in the near future and reintroduction of this species in the nature.


Sparassis crispa strains; molecular genetics and culture-morphological methods; scanning electron microscopy; growth rate; critical temperatures

Full Text:



Bisko, N. A., Lomberg, M. L., Mytropolska, N. Yu., & Mykchaylova, O. B. (2016). The IBK mushroom culture collection. Kyiv, M.G. Kholodny Institute of Botany, National Academy of Sciences of the Ukraine, Kyiv, Alterpres.

Bisko, N.A., Lomberg, M.L., Mykchaylova, O.B., Mytropolska, N.Yu., Al-Maali, G. (2016). Ex situ conservation of rare species of macromycetes in the IBK culture collection of mushrooms. Rare plants and fungi of Ukraine and adjacent areas: implementing conservation strategies. Kyiv: Palyvoda (in Ukrainian).

Bisko, N.A., Babitskaya, B.G., Buchalo, A.S., Lomberg, M.L., Mykchaylova, O.B., Puchkova, T.A., Solomko, E.F., Scherba, V.V. (2012). Biologicheskie osobennosti lekarstvennyh makromicetov v kul'ture: Sbornik nauchnyh trudov v dvuh tomah. Volume 2 [Biological features of medicinal macromycetes in culture: Collection of scientific works in two volumes]. Alterpres, Kyiv (in Russian).

Buchalo, A.S. (1988). Higher edible Basidiomycetes in pure culture. Naukova dumka, Kiev (in Russian).

Buchalo, A., Mykchaylova, O., Lomberg, M., Wasser, S. P. (2009). Microstructures of vegetative mycelium of Macromycetes in pure cultures. M.G. Kholodny Institute of Botany.

Buchalo, A.S., Babitskaya, B.G., Bisko, N.A., Wasser, S.P., Dudka, I.A., Mytropolska, N.Yu., Mykchaylova, O.B., Poyedinok, N.L. (2011). Biologicheskie osobennosti lekarstvennyh makromicetov v kul'ture: Sbornik nauchnyh trudov v dvuh tomah. Volume 1 [Biological features of medicinal macromycetes in culture: Collection of scientific works in two volumes.]. Alterpres, Kyiv (in Russian).

Buchalo, A.S., Mytropolska, N.Yu., Mykchaylova, O.B. (2011). The catalogue of the culture collection of mushrooms. Kyiv: Alterpress (in Russian).

Buchalo, A. S., Wasser, S. P., Mykhaylova, O. B., Bilay, V. T., Lomberg, M. L. (2011). Taxonomical significance of microstructures in pure cultures of macromycetes. In Proceedings of the 7th International Conference on Mushroom Biology and Mushroom Products (ICMBMP7).

Choi, W. S., Shin, P. G., Bok, Y. Y., Jun, N. H., & Kim, G. D. (2013). Anti-inflammatory effects of Sparassis crispa extracts. Journal of Mushroom, 11(1), 46-51, http:// doi:10.14480/JM.2013.11.1.046

Dalonso, N., Goldman, G. H., & Gern, R. M. M. (2015). β-(1→ 3), (1→ 6)-Glucans: medicinal activities, characterization, biosynthesis and new horizons. Applied microbiology and biotechnology, 99(19), 7893-7906. http://doi:10.1007/s00253-015-6849-x.

Diduh, Ya. P. (2009). Red Data Book of Ukraine. Plantage. Kyiv, Globalkonsaltyng, (in Ukrainian).

Dörnte, B., & Kües, U. (2013). Fast microwave-based DNA extraction from vegetative mycelium and fruiting body tissues of Agaricomycetes for PCR amplification. Curr Trends Biotechnol Pharm, 7, 825-836.

Dyakov, M.Yu., Kamzolkina, O.V., Shtaer, O.V., Bisko, N.A., Poyedinok, N.L., Mykchaylova, O.B., Tikhonova, O.V., Tolstikhina, T.E., Vasil’eva, B.F., and Efremenkova, O.V.(2011). Morphological Characteristics of Natural Strains of Certain Species of Basidiomycetes and Biological Analysis of Antimicrobial Activity under Submerged Cultural Conditions. Microbiology, 80(2), 274–285.

Dudka, I.O. (2014). Disputable items of conservation and inclusion in the Red Data Book of Ukraine of micromycetes and fungi-like organisms. Flora in the Red Data book of Ukraine: implementation of the global strategy for plant conservation. Lviv (in Ukrainian).

Faroog, M.U., Chioza, A., Ohga, S. (2014). Vegetative Development of Sparassis crispa in Various Growth Conditions and Effect of Electric Pulse Simulation on Its Fruit Body Production. Advances in Microbiology. 4, 267–274.

Hadara, T., Miura, N.N., Adachi, Y., Nakajima, M., Yadomae, T., Ohno, N. (2003). Antibody to soluble 1,3/1,6- β-D-glucan, SCG in Sera of Naïve DBA/2 Mice. Biological and Pharmaceutical Bulletin, 26, 1225–1228.

Hu, S., Wang, D., Zhang, J., Du, M., Cheng, Y., Liu, Y., Zhang, N., Wang, D., Wu, Y.(2016). Mitochondria Related Pathway Is Essential for Polysaccharides Purified from Sparassis crispa Mediated Neuro-Protection against Glutamate-Induced Toxicity in Differentiated PC12 Cells. Int. J. Mol. Sci. 17(2), 133.

Kim, S.R., Kang, H.W., Ro, H.S. (2013). Generation and evaluation of high β-glucan producing mutant trains of Sparassis crispa, Mycobiology. 41,159–163.

Kimura, T. (2013). Natural products and biological activity of the pharmacologically active cauliflower mushroom Sparassis crispa. BioMed Res Int 2013:982317

Kumar, M., Shukla, P. K. (2005). Use of PCR targeting of internal transcribed spacer regions and single-stranded conformation polymorphism analysis of sequence variation in different regions of rRNA genes in fungi for rapid diagnosis of mycotic keratitis. Journal of Clinical Microbiology, 43(2), 662-668.

Kwon A.H., Qiu Z., Hashimoto M., Kimura T. (2009). Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetis rats. The American journal of Surgery. 197, 503–509.;

Lomberg, M. L., Mykchaylova, O. B., & Bisko, N. A. (2015). Kolekcija kul'tur shapynkovyh grybiv (IВK) jak ob’jekt nacional'nogo nadbannja [Mushroom culture collection (IBK) as a subject of national heritage of Ukraine]. Ukrainian botany magazine, 72(1), 22–28 (in Ukrainian).

Nobles, M. K. (1971). Cultural characters as a guide to the taxonomy of the Polyporaceae. Evolution in the higher Basidiomycetes.

Psurtseva, N.V., Kiyashko, A.A., Shakhova, N.V. (2007). Ekologo-taksonomicheskie predposylki polucheniya plodovikh tel. v kulture u makromitsetov, predstavlyayushchikh interes dlya meditsiny, Uspikhi meditsinskoy mikologii, IX, 254–258. (in Russia).

Psurtseva, N.V. (2008). Cultural characteristics as the basis for verification of macromycetes while maintaining ex situ. Vyisshie bazidialnyie gribyi: individuumyi, populyatsii, soobschestva: materialy yubileynoy konfer., posvyasch. 110-letiyu M.V. Gorlenko. Moscow (in Russia).

Shim, J.O., Son, S.G., Yoon, S.O., Lee, Y.S., Lee, T.S., Lee, S.S., Lee, K.D., Lee, M.W. (1998). The optimal Factors for the Mycelial Growth of Sparassis crispa. Korean J. Mycol, 26(1), 39–46.

Smith, D.(2003). Culture collections over the world. Int. Microbiol, 6, 95–100.

Smith, D., Ryan, M.J. (2004). Current status of fungal collections and their role in biotechnology (pp. 527-538). In: “Handbook of fungal biotechnology” D.K. Arora (Ed.) New York: Marcel Dekker, Inc.

Solomko, E. F., Lomberg, M. L., & Mytropolska, N. Ju. (2000). Rist okremyh vydiv likars'kyh makromicetiv na zhyvyl'nyh seredovyshhah riznogo skladu [Growth of some species of medicinal macromycetes on nutrient media of different composition]. Ukrainian botany magazine, 57(2), 119–126 (in Ukrainian).

Stalpers, J. A. (1978). Identification of wood-inhabiting Aphyllophorales in pure culture. Studies in Mycology, 16, 1−248.

Tada, R., Harada, T., Nagi-Miura, N., Adachi, Y., Nakajima, M., Yadomae, T., & Ohno, N. (2007). NMR characterization of the structure of a β-(1→ 3)-D-glucan isolate from cultured fruit bodies of Sparassis crispa. Carbohydrate Research, 342(17), 2611-2618.

Takashi, K. (2013). Natural Products and Biological Activity of the Pharmacologically Active Cauliflower Mushroom Sparassis crispa. BioMed Research International, 1−9.

Vedenicheva, N.P., Al-Maali, G., Mytropolska, N.Yu., Mykchaylova, O.B., Bisko, N.A., Kosakivska, I.V. (2016). Endogenous cytokinins in medicinal basidiomycetes mycelial biomass. Biotechnologia acta, 9(1), 55–63. 9.01.055

Wasser, S. P. (2014). Medicinal mushroom science: Current perspectives, advances, evidences, and challenges. Biomed J, 37(6), 345-56.

Wasser, S.P. (2010). Medicinal mushroom science: History, current status, future trends, and unsolved problems. Int. J. Med. Mushrooms,12(1), 1–16.

Woodward, S., Sultan, H. Y., Barrett, D. K., & Pearce, R. B. (1993). Two new antifungal metabolites produced by Sparassis crispa in culture and in decayed trees. Microbiology, 139(1), 153-159.

Yamamoto, K., Kimura, T., Sugitachi, A., & Matsuura, N. (2009). Anti-angiogenic and anti-metastatic effects of β-1, 3-D-glucan purified from Hanabiratake, Sparassis crispa. Biological and Pharmaceutical Bulletin, 32(2), 259-263.

Yang, Y.H., Kang, H-W., Ro, H.S. (2014). Cloning and molecular characterization of β-1,3-glucan synthase from Sparassis crispa. Mycobiology, 42(2), 167–173.

Yoshikawa, K., Kokudo, N., Hashimoto, T., Yamamoto, K., Inose, T., Kimura, T. (2010). Novel Phthalate Compounds from Sparassis crispa (Hanabiratake), Hanabiratakelide A-C, exhibiting anticancer related activity. Biological and Pharmaceutical Bulletin, 33(1), 1355–1359.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138