Synergistic effect of pyrethroid insecticide and entomopathogenic fungus on Daphnia magna Straus

Yu. A. Noskov, E. A. Chertkova, O. V. Polenogova, O. N. Yaroslavtseva

Abstract


The interaction between the entomopathogenic fungus Metarhizium robertsii and the pyrethroid insecticide esfenvalerate on Daphnia magna Straus was investigated. A synergy in the mortality of daphnids was detected after simultaneous treatment with sub-lethal doses of the fungus (1×105 conidia/ml) and esfenvalerate (0.1 mkg/l). The defense strategies of daphnids infected by fungus and treated with esfenvalerate and untreated insects were compared to investigate the mechanisms of this synergy. Activity of enzymes of the detoxification system and concentration of dopamine were measured. We have shown changes in the activities of the enzymes and dopamine concentration of daphnids under combined treatment of esfenvalerate and fungus. Fungus enhanced activity of glutathione-S-transferase and non-specific esterase but did not affect the dopamine level. Esfenvalerate inhibited the activity of enzymes in the detoxification system and cause a rise in dopamine level. We assume that the suppression of the detoxification system may be one of the reasons of synergy between M. robertsii and esfenvalerate.


Keywords


Pyrethroids; esfenvalerate; synergism; Daphnia magna; Metarhizium robertsii; detoxifying system; dopamine

Full Text:

PDF

References


Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254.

Chertkova, E. A., Dubovskiy, I. M., Yaroslavtseva, O. N., Grizanova, E. V., Kryukov, V. Yu., & Glupov, V. V. (2016). Izmenenie urovnya dofamina v gemolimfe lichinok kapustnoy sovki Mamestra brassicae L. (Lepidoptera: Noctuidae) i koloradskogo zhuka Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae) pri razlichnyih patogenezah. Evraziatskiy entomologicheskiy zhurnal, 15(1), 60-67. (In Russian).

Daam, M. A., Van den Brink, P. J., & Nogueira, A. J. (2008). Impact of single and repeated applications of the insecticide chlorpyrifos on tropical freshwater plankton communities. Ecotoxicology, 17(8), 756-771. DOI: 10.1007/s10646-008-0227-8.

Desneux, N., Decourtye, A., & Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol., 52, 81-106. DOI: 10.1146/annurev.ento.52.110405.091440.

Dubovskiy, I. M., Kryukov, V. Y., Benkovskaya, G. V., Yaroslavtseva, O. N., Surina, E. V., & Glupov, V. V. (2010). Activity of the detoxificative enzyme system and encapsulation rate in the Colorado potato beetle Leptinotarsa decemlineata (Say) larvae under organophosphorus insecticide treatment and entomopathogenic fungus Metharizium anisopliae (Metsch.) infection. Euroasian Entomol. J, 9, 577-582.

Dubovskiy, I. M., Slyamova, N. D., Kryukov, V. Y., Yaroslavtseva, O. N., Levchenko, M. V., Belgibaeva, A. B., & Glupov, V. V. (2012). The activity of nonspecific esterases and glutathione-S-transferase in Locusta migratoria larvae infected with the fungus Metarhizium anisopliae (Ascomycota, Hypocreales). Entomological review, 92(1), 27-31. DOI: 10.1134/S0013873812010022.

Dubovskiy, I. M., Yaroslavtseva, O. N., Kryukov, V. Y., Benkovskaya, G. V., & Glupov, V. V. (2013). An increase in the immune system activity of the wax moth Galleria mellonella and of the Colorado potato beetle Leptinotarsa decemlineata under effect of organophosphorus insecticide. Journal of Evolutionary Biochemistry and Physiology, 49(6), 592. DOI: 10.1134/S0022093013060066.

Fisher, J. J., Castrillo, L. A., Donzelli, B., & Hajek, A. E. (2016). Starvation and imidacloprid exposure influence immune response by A. glabripennis to M. brunneum.

ECOIMMUNOLOGY OF THE ASIAN LONGHORNED BEETLE, ANOPLOPHORA GLABRIPENNIS, 111. DOI: 10.1093/jee/tox124.

Furlong, M. J., & Groden, E. (2001). Evaluation of synergistic interactions between the Colorado potato beetle (Coleoptera: Chrysomelidae) pathogen Beauveria bassiana and the insecticides, imidacloprid, and cyromazine. Journal of Economic Entomology, 94(2), 344-356. DOI:10.1603/0022-0493-94.2.344

Gruntenko, N. E., Karpova, E. K., Adonyeva, N. V., Chentsova, N. A., Faddeeva, N. V., Alekseev, A. A., & Rauschenbach, I. Y. (2005). Juvenile hormone, 20-hydroxyecdysone and dopamine interaction in Drosophila virilis reproduction under normal and nutritional stress conditions. Journal of insect physiology, 51(4), 417-425. DOI: 10.1016/j.jinsphys.2005.01.007.

Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S-transferases the first enzymatic step in mercapturic acid formation. Journal of biological Chemistry, 249(22), 7130-7139.

James, R. R., & Xu, J. (2012). Mechanisms by which pesticides affect insect immunity. Journal of invertebrate pathology, 109(2), 175-182. DOI: 10.1016/j.jip.2011.12.005.

Jia, M., Cao, G., Li, Y., Tu, X., Wang, G., Nong, X., ... & Zhang, Z. (2016). Biochemical basis of synergism between pathogenic fungus Metarhizium anisopliae and insecticide chlorantraniliprole in Locusta migratoria (Meyen). Scientific reports, 6. DOI: 10.1038/srep28424.

Kryukov, V. Y., Khodyrev, V. P., Yaroslavtseva, O. N., Kamenova, A. S., Duisembekov, B. A., & Glupov, V. V. (2009). Synergistic action of entomopathogenic hyphomycetes and the bacteria Bacillus thuringiensis ssp. morrisoni in the infection of Colorado potato beetle Leptinotarsa decemlineata. Applied biochemistry and microbiology, 45(5), 511-516. DOI: 10.1134/S000368380905010X.

Kryukov, V. Y., Tomilova, O. G., Luzina, O. A., Yaroslavtseva, O. N., Akhanaev, Y. B., Tyurin, M. V., ... & Glupov, V. V. (2017). Effects of fluorine‐containing usnic acid and fungus Beauveria bassiana on the survival and immune–physiological reactions of Colorado potato beetle larvae. Pest management science. DOI: 10.1002/ps.4741.

Kurbatova, S. A., Koreneva, E. A., & Vinogradov, G. A. (2007). Reaktsiya zooplanktona mikrokosmov na razdelnoe i sovmestnoe postuplenie hlorpirifosa i smesi tyazhelyih metallov. Biologiya vnutrennih vod, (3), 87-94. (In Russian).

Noskov, Yu. A., Boyarischeva, E. A., Belevich, O. E., & Yurchenko, Yu. A. (2010). Raspredelenie chuvstvitelnosti vidov k esfenvaleratu v soobschestvah chlenistonogih presnyih vodoyomov yuga Zapadnoy Sibiri. Evraziatskiy entomologicheskiy zhurnal, 9(4), 583-589. (In Russian).

Pereira, J. L., Antunes, S. C., Castro, B. B., Marques, C. R., Gonçalves, A. M., Gonçalves, F., & Pereira, R. (2009). Toxicity evaluation of three pesticides on non-target aquatic and soil organisms: commercial formulation versus active ingredient. Ecotoxicology, 18(4), 455-463. DOI: 10.1007/s10646-009-0300-y.

Prabhakaran, S. K., & Kamble, S. T. (1995). Purification and characterization of an esterase isozyme from insecticide resistant and susceptible strains of German cockroach, Blattella germanica (L.). Insect biochemistry and molecular biology, 25(4), 519-524.

Pridgeon, J. W., Becnel, J. J., Clark, G. G., & Linthicum, K. J. (2009). A high-throughput screening method to identify potential pesticides for mosquito control. Journal of medical entomology, 46(2), 335-341. DOI:10.1603/033.046.0219.

Russell, C. W., Ugine, T. A., & Hajek, A. E. (2010). Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae). Journal of invertebrate pathology, 105(3), 305-311. DOI: 10.1016/j.jip.2010.08.009.

Sanchez-Bayo, F. P. (2012). Insecticides mode of action in relation to their toxicity to non-target organisms. Journal of Environmental & Analytical Toxicology. DOI:10.4172/2161-0525.S4-002.

Serebrov, V. V., Gerber, O. N., Malyarchuk, A. A., Martemyanov, V. V., Alekseev, A. A., & Glupov, V. V. (2006). Effect of entomopathogenic fungi on detoxification enzyme activity in greater wax moth Galleria mellonella L.(Lepidoptera, Pyralidae) and role of detoxification enzymes in development of insect resistance to entomopathogenic fungi. Biology Bulletin, 33(6), 581-586. DOI: 10.1134/S1062359006060082.

Serebrov, V. V., Kiselev, A. A., & Glupov, V. V. (2003). Izuchenie nekotoryih faktorov sinergizma mezhdu entomopatogennyimi gribami i himicheskimi insektitsidami. Mikologiya i fitopatologiya, 1(37), 76-82. (In Russian).

Stapel, J. O., Cortesero, A. M., & Lewis, W. J. (2000). Disruptive sublethal effects of insecticides on biological control: altered foraging ability and life span of a parasitoid after feeding on extrafloral nectar of cotton treated with systemic insecticides. Biological Control, 17(3), 243-249. DOI:10.1006/bcon.1999.0795.

Tomilova, O. G., Kryukov, V. Y., Duisembekov, B. A., Yaroslavtseva, O. N., Tyurin, M. V., Kryukova, N. A., Glupov, V. V. (2016). Immune-physiological aspects of synergy between avermectins and the entomopathogenic fungus Metarhizium robertsii in Colorado potato beetle larvae. Journal of invertebrate pathology, 140, 8-15. DOI: 10.1016/j.jip.2016.08.008.

Van Wijngaarden, R., Brock, T., & Douglas, M. T. (2005). Effects of chlorpyrifos in freshwater model ecosystems: the influence of experimental conditions on ecotoxicological thresholds. Pest management science, 61(10), 923-935. DOI: 10.1002/ps.1084.




DOI: http://dx.doi.org/10.15421/2017_133

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138