Preconditioning of a virginiamycin solution for crystallization

D. A. Durnikin, E. S. Yacenko, I. Yu. Evdokimov, V. B. Akopyan, V. V. Dzhavakhiya, E. V. Glagoleva, V. A. Savushkin, V. V. Saveleyeva

Abstract


Crystallization of antibiotics and other biologically active substances from water solutions represents an important stage of their biotechnological production. The process is based on a sharp reduction of a target compound solubility caused by either temperature decrease, or supersaturation of a solution. A preconditioning of a solution, i.e., its evaporation with a simultaneous temperature decrease seems to be an optimal technical solution, especially advantageous for the treatment of thermolabile substances. This paper describes the technology and equipment for the pre-crystallization treatment of solutions of various substances produced by the biotechnological and chemical industries. The proposed preconditioning technology includes ultrasonic dispersion of a solution and formation of an aerosol with a large integral evaporation surface followed by condensation. Comparing to common tubular evaporators used in various industrial processes, this technology provides about equal productivity and, at the same time, lower energy consumption, since it does not require the heating and the further cooling of a solution needed to evaporate and condensate the solvent, respectively, that prevents undesirable effect of high temperature on thermolabile compounds. In addition, the technology prevents the damage of thermolabile compounds, improves the efficiency of the further crystallization process due to the ultrasound-stimulated formation of crystallizing nuclei, and provides a solvent distillate suitable for the further re-use. The designed device for preconditioning has been successfully tested using culture broth of Streptomyces sp. containing a feed antibiotic virginiamycin; such treatment with the further crystallization in standard crystallizers has resulted in the efficient formation of equal-sized antibiotic crystals.

Keywords


crystallization; antibiotics; supersaturated solution; ultrasonic dispersion; virginiamycin

Full Text:

PDF

References


Akhmedshina, V.A., Bazyutov, V.A. (2012) Kristallizatsiya energonasyshchennyh soedinenii iz rastvorov [Crystallization of energy-saturated compounds from solutions]. KNITU, Kazan (in Russian).

Akopyan, V.B., Ershov, Yu.A. (2016). Osnovy vzaimodeistviya ultrazvuka s biologicheskimi ob’ektami [Fundamentals of the ultrasound interaction with biological objects]. YURAIT, Moscow (in Russian).

Anderson, H.W., Carberry, J.B., Staunton, H.F., Sutradhar, B.C. (1994). Crystallization of adipic acid. Patent US 5471001.

Arshad, M., Anjum, Z.M., Asghar, M., Bhatti, H. (2011). Improving bio-ethanol yield: using virginiamycin and sodium flouride at a Pakistani distillery. African Journal of Biotechnology, 10(53), 11071-11074.

Barata, M., Duflot, P., Gharsallaoui, A., Mathlouthi, M. (2007). Procédé d'évapocristallisation du maltitol. Patent EP 2055197 (in French).

Bechtel, S., Rauls, M., Gelder, R., Simpson, S.C. (2005). Crystallization of amino acids using ultrasonic agitation. Patent US 6992216.

Borisov, Yu.Ya. (1980). Konstruktivnye osobennosti gazostruinyh izluchatelei [Constructive features of jet-edge generators]. Akusticheskiy zhurnal, 26(1), 41–47 (in Russian).

Cervantes, H., Bafundo, K., Ewing, P., Pesti, G., Bakalli, R. (2002). Dietary supplementation with virginiamycin or phytase improves phosphorus utilization in broiler chicks. Poultry Sciebce, 81 (Suppl. 1), 150.

Chefonov, N.G., Tsutsarin, V.V., Zhileev, V.T., Kalinov, B.P., Chefonova, T.A. (1981). Ustroistvo dlya avnomaticheskogo upravleniya protsessom kristallizatsii [Device for the automatic control of a crystallization process]. Patent RU 1084038 (in Russian).

Chem-Report (2015). Virginiamycin global market and forecast research 2015. Available from: http://www.marketresearchreports.com/chem-report/virginiamycin-global-market-and-forecast-research-2015. Accessed 26 Jun 2017.

Cocito, C. (1979). Antibiotics of the virginiiamycin family, inhibitors which contain synergistic components. Microbiological Reviews, 43, 145-198.

Doubochinski, D.B., Tennenbaum, J. (2014). New physical effect permits factor-of-ten reduction in energy requirements for cooling. Advanced Materials Research, 875-877, 1842-1846.

Doubochinsky, D. (2006). Bonnes vibrations pour la clim. Clim pratique, 77, 5–7 (in French).

Dzhavakhiya V., Savushkin V., Ovchinnikov A., Glagolev V., Savelyeva V., Popova E., Novak N., Glagoleva E. Scaling up a virginiamycin production by a high-yield Streptomyces virginiae VKM Ac-2738D strain using adsorbing resin addition and fed-batch fermentation under controlled conditions. 3 Biotech, 2016, 6(2), Article ID 240.

Grozina, A.A., Pronin, V.V., Dyumin, M.S. (2014). Morfologicheskaya otsenka stenki kishechnika tsyplyat krossa ‘Kobb 500’ na fone primeneniya antibiotika i probiotika [Morphological evaluation of the intestinal wall of COBB500 chicken cross during the use of antibiotics and probiotics]. Rossiiskiy veterinarniy zhurnal, 4, 16-17 (in Russian).

Hassoun, M. (2003). Criblage de paramètres influant sur la cristallisation par refroidissement d'un produit organique assistée par ultrasons en cristallisoir discontinu et continu. Thèse de doctorat, Institut National Polytechnique de Toulouse (in French).

Ignatovich, E. (2007). Khimicheskaya tehnika. Processy i apparaty [Chemical technics. Processes and apparates]. Tehnosfera, Moscow (in Russian).

Kelly, D.R., Harrison, S.J., Jones, S., Masood, M.A., Morgan, J.J.G. (1993). Rapid crystallisation using ultrasonic irradiation – sonocrystallisation. Tetrahedron Letters, 34(16), 2689–2690.

Louhi-Kultanen, M., Karjalainen, M., Rantanen, J., Huhtanen, M., Kallas, J. (2006). Crystallization of glycine with ultrasound. International Journal of Pharmaceutics, 320(1-2), 23–29.

Mersmann, В. (2001). Crystallization technology handbook. CRC Press, New York. Ruecroft, G., Hipkiss, D., Ly, T., Maxted, N., Cains, P.W. (2005). Sonocrystallization: the use of ultrasound for improved industrial crystallization. Organic Process Research & Development, 9(6), 923–932.

Savushkin, V.A., Dzhavakhiya, V.V., Glagoleva, E.V., Savel'eva, V.V., Popova, E.D., Ovchinnikov, A.I., Glagolev, V.I., Novak, N.V., Durnikin, D.A. (2016). Razrabotka vysokoaktivnogo shtamma-produtsenta virdzhiniamitsina i povyshenie ego produktivnosti s pomoshch’yu sinteticheskih adsorbiruyushchih cmol [Development of highly active virginiamycin-producing strain and improvement of its productivity using synthetic adsorbing resins]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6 (3), 195–208 (in Russian).

Shojadoost, B., Peighambari, S.M., Nikpiran, H. (2013). Effects of virginiamycin against experimentally induced necrotic enteritis in broiler chickens vaccinated or not with an attenuated coccidial vaccine. Journal of Applied Poultry Research, 22(2), 160–167.

Van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B.T., Levin, S.A., Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 3099, 1–9.




DOI: http://dx.doi.org/10.15421/2017_104

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138