GEOMETRICAL PARAMETERS OF EGGS IN BIRD SYSTEMATICS

I. S. Mityay, A. V. Matsyura

Abstract


Our ideas are based on the following assumptions. Egg as a standalone system is formed within another system, which is the body of the female. Both systems are implemented on the basis of a common genetic code. In this regard, for example, the dendrogram constructed by morphological criteria eggs should be approximately equal to those constructed by other molecular or morphological criteria adult birds. It should be noted that the dendrogram show only the degree of genetic similarity of taxa, therefore, the identity of materials depends on the number of analyzed criteria and their quality, ie, they should be the backbone. The greater the number of system-features will be included in the analysis and in one other case, the like are dendrogram. In other cases, we will have a fragmentary similarity, which is also very important when dealing with controversial issues. The main message of our research was to figure out the eligibility of usage the morphological characteristics of eggs as additional information in taxonomy and phylogeny of birds.

Our studies show that the shape parameters of bird eggs show a stable attachment to certain types of birds and complex traits are species-specific. Dendrogram and diagrams built by the quantitative value of these signs, exhibit significant similarity with the dendrogram constructed by morphological, comparative anatomy, paleontology and molecular criteria for adult birds. This suggests the possibility of using morphological parameters eggs as additional information in dealing with taxonomy and phylogeny of birds.

Keywords: oology, geometrical parameters of eggs, bird systematics


Full Text:

PDF

References


Кузякин А.П., 1954. Учет оологических признаков и особенностей гнездовья в классификации птиц // Бюллетень МОИП. – Т. LIХ, вып. 6. – С. 27 -37.

Курочкин Е.Н., 2004. Четырехкрылый динозавр и происхождение птиц // Природа – №5. – С. 3-12.

Митяй И.С., 2003. Новая методика комплексной оценки формы яйца // Бранта. – Вып. 6. – С. 179–192.

Митяй И.С., 2008. Использование современных технологий в исследованиях птичьих яиц // Вісник ЗНУ: Зб. наук. ст. Біол. науки. – Запоріжжя: ЗНУ. – Вип. 1. – С. 191 – 200.

Францевич Л.И. Планиметрия параметров формы птичьего яйца. 2014. Заголовок с экрана. http://www.biometrica.tomsk.ru/planirus.htm

Amaral K.F., Jorge W., 2003. The chromosomes of the Order Falconiformes: a review // Ararajuba. – Vol. 11 (1). – Р. 65-73.

Barta Z., Székely T., 1997. The optimal shape of avian eggs // Functional Ecology. – Volume 11, Number 5. – Р. 656-662.

Clarke J.A., Tambussi C.P., Noriega J.I., Erickson G.M., Ketcham R.A., 2005. Definitive fossil evidence for the extant avian radiation in the Cretaceous // Nature. – Vol. 433. – Рp. 305-308.

Gamauf A., Haring E. Molecular phylogeny and biogeography of Honey-buzzards (genera Pernis and Henicopernis) // Journal of Zoological Systematics and Evolutionary Research. - Vol. 42. - 2004. - Р. 145–153.

Harshman J., 1994. Reweaving the tapestry: what can we learn fron Sibley and Ahlquist (1990)? // The Auk. – Vol. 111(2). – P. 377-388.

Huynen, L., Gill, Brian J., Millar, Craig D., Lambert, David M. 2010. Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand's extinct moa // Proc. Natl. Acad. Sci. USA. 107(37), 16201-16206.

Lerner H.R., Mindell D.P., 2005. Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA // Molecular Phylogenetics and Evolution. – Vol. 37. – Р. 327–346.

Livezey B.C., Zusi R.L., 2007. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion // Zoological Journal of The Linnean Society. – Vol. 149(1). – Р. 1–95.

Mayr G., 2005. The postcranial osteology and phylogenetic position of the middle Eocene Messelastur gratulator Peters, 1994 - a morphological link between owls (Strigiformes) and Falconiform birds? // Journal of Vertebrate Paleontology. – Vol. 25(3). – Р. 635–645.

Mayr G., Clarke J., 2003. The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters // Cladistics. – Vol. 19. – Р. 527–553.

Sibley C.G., Ahlquist J.E., 1990. Phylogeny and Classification of Birds – A Study in Molecular Evolution: Yale University Press. – 976 р.

Slack K.E., 2012. Avian phylogeny and divergence times based on mitogenomic sequences. – Institute of Molecular BioSciences, Massey University, Palmerston North: New Zealand. – 125 p.

Zelenitsky D.K., Therrien F., Ridgely R.C., McGee A.R., Witmer L.M., 2012. Evolution of olfaction in non-avian theropod dinosaurs and birds // Proceedings of the Royal Society. Biological Sciences. – Р. 1-22.

REFERENCES

Kuzaikin, A. P. (1954). Oological features and breeding peculiarities in vird classification. Bulletin of Moscow Naturalist Society. LIХ(6), 27-37.

Kurochkin, Ye. N. (2004). Tetrapterous dinosaur and bird origin. Nature. 5, 3-12.

Mityay, I.S. (2003). New approach of integrated evaluation of bird shape. Branta. 6, 179–192.

Mityay, I.S. (2008). Use of modern technologies in bird egg research. Bulletin of Zaporozhye National University. 1, 191-200.

Frantsevich, L.I. (2014). Planimetry of bird eggs shapes. Retrieved from http://www.biometrica.tomsk.ru/planirus.htm

Amaral, K.F., Jorge, W. (2003). The chromosomes of the Order Falconiformes: a review. Ararajuba. 11(1), 65-73.

Barta, Z., Székely, T. (1997). The optimal shape of avian eggs. Functional Ecology. 11(5), 656-662.

Clarke, J.A., Tambussi, C.P., Noriega, J.I., Erickson, G.M., Ketcham, R.A. (2005). Definitive fossil evidence for the extant avian radiation in the Cretaceous. Nature. 433,305-308.

Gamauf, A., Haring, E. (2004). Molecular phylogeny and biogeography of Honey-buzzards (genera Pernis and Henicopernis). Journal of Zoological Systematics and Evolutionary Research. 42, 145–153.

Harshman, J. (1994). Reweaving the tapestry: what can we learn fron Sibley and Ahlquist (1990)? The Auk. 111(2), 377-388.

Huynen, L., Gill, Brian J., Millar, Craig D., Lambert, David M. (2010). Ancient DNA reveals extreme egg morphology and nesting behavior in New Zealand's extinct moa. Proc. Natl. Acad. Sci. USA. 107(37), 16201-16206.

Lerner, H.R., Mindell, D.P. (2005). Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution. 37,327–346.

Livezey, B.C., Zusi, R.L. (2007). Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoological Journal of The Linnean Society. 149(1),1–95.

Mayr, G. (2005). The postcranial osteology and phylogenetic position of the middle Eocene Messelastur gratulator Peters, 1994 - a morphological link between owls (Strigiformes) and Falconiform birds? Journal of Vertebrate Paleontology. 25(3), 635–645.

Mayr G., Clarke J. (2003). The deep divergences of neornithine birds: a phylogenetic analysis of morphological characters. Cladistics. 19, 527–553.

Sibley, C.G., Ahlquist, J.E. (1990). Phylogeny and Classification of Birds – A Study in Molecular Evolution: Yale University Press.

Slack, K.E. (2012). Avian phylogeny and divergence times based on mitogenomic sequences. Institute of Molecular BioSciences, Massey University, Palmerston North: New Zealand.

Zelenitsky, D.K., Therrien, F., Ridgely, R.C., McGee, A.R., Witmer, L.M. (2012). Evolution of olfaction in non-avian theropod dinosaurs and birds. Proceedings of the Royal Society. Biological Sciences.




DOI: http://dx.doi.org/10.15421/20144_29

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138