DEVELOPMENT OF HIGHLY ACTIVE VIRGINIAMYCIN-PRODUCING STRAIN AND IMPROVEMENT OF ITS PRODUCTIVITY USING SYNTHETIC ADSORBING RESINS

V. A. Savushkin, V. V. Dzhavakhiya, E. V. Glagoleva, V. V. Savel'eva, E. D. Popova, A. I. Ovchinnikov, V. I. Glagolev, N. V. Novak, D. A. Durnikin

Abstract


Virginiamycin, an antibiotic produced by some Streptomyces species, is widely used in veterinary and bioethanol production. It represents a natural mix of two different macrocyclic components, among which M1 and S1 factors are the main acting components. M1 and S1 act synergistically when present in the optimum ratio of 60-75% of M1 and 25-40% of S1. Due to a large number of genes involved into the virginiamycin biosynthesis, the development of overproducing strains able to synthesize M1 and S1 at a synergistic ratio with the total productivity exceeding 3-4 g/L still remains a relevant problem. Using a multi-step random UV mutagenesis of the Streptomyces sp. strain DSM40559, a highly active strain S 15-30 was obtained, which virginiamycin titer on a basic medium significantly increased that of the parental strain (2.6 and 0.35 g/L, respectively), and the M1:S1 ratio remained synergistic (72:28). Various sources of carbon, nitrogen, and macroelements were evaluated for medium improvement, and several different types of synthetic macroporous resins were tested to provide the highest virginiamycin titer in culture broth of the developed strain. The resulting improved fermentation medium supplemented with 20 g/L of Amberlite XAD-16 resin increased strain productivity up to 5.03 ± 0.12 g/L with the simultaneous maintenance of the M1:S1 ratio within the synergistic range (72:28) and highly selective level of adsorption of the antibiotic from culture broth (92-95%). The variability of the M1:S1 ratio in the total antibiotic titer depending on various medium composition and resin type was first demonstrated. The obtained strain is promising for the industrial use due to its high productivity and the optimal M1:S1 ratio. Results of the study will be used for the further selection of overproducing strains and the scaling up of the virginiamycin production. The obtained data can be interesting for other researchers working in the field of production of macrolide antibiotics.


Keywords


virginiamycin; Streptomyces; strain improvement; induced mutagenesis; synthetic resin

Full Text:

PDF

References


Булыгина Е.С., Кузнецов Б.Б., Марусина А.И., Кравченко И.К., Быкова С.А., Колганова Т.В., Гальченко В.Ф. Изучение нуклеотидных последовательностей nifH генов у представителей метанотрофных бактерий // Микробиология. – 2002. Т. 71. - № 4. – С. 500-508.

Грозина А.А., Пронин В.В., Дюмин М.С. Морфологическая оценка стенки кишечника цыплят кросса «Кобб 500» на фоне применения антибиотика и пробиотика // Российский ветеринарный журнал. – 2014. – № 4. – С. 16-17.

Егоров Н.С. Промышленная микробиология. – М.: Высшая школа, 1989. – 688 с.

Хойцман А., Старосельский А., Ашаш У., Тарасова К.С., Елисова Т.В. Влияние препарата Stafac®110 на продуктивность цыплят-бройлеров в промышленных условиях России // Птицеводство. – 2011. – № 7. – С. 30-32.

Arshad M., Anjum Z.M., Asghar M., Bhatti H. Improving bio-ethanol yield: using virginiamycin and sodium flouride at a Pakistani distillery // African J. Biotechnol. – 2011. –V. 10. – No. 53. – P. 11071-11074.

Biot A.M. 1984. Virginiamycins: properties, biosynthesis, and fermentation. In: Biotechnology of industrial antibiotics (Vandamme E.J., ed.). New York–Basel: Dekker. – P. 695–720.

Cervantes H., Bafundo K., Ewing P., Pesti G., Bakalli R. Dietary supplementation with virginiamycin or phytase improves phosphorus utilization in broiler chicks // Poult. Sci. – 2002. – V. 81 (Suppl. 1). – P. 43.

Cocito C. Antibiotics of the virginiiamycin family, inhibitors which contain synergistic components // Microbiol. Rev. – 1979. – V. 43. – P. 145-198.

De Somer P., Van Dijck P. A preliminary report on antibiotic number 899, a streptogramin-like substance // Antibiot. Chemother. – 1955. – V. 5. – P. 632-639.

Di Giambattista M., Chinali G., Cocito C. The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes // J. Antimicrob. Chemother. – 1989. – Vol. 24. – P. 485–507.

Feighner S.D., Dashkevicz M.P. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholytaurine hydrolase activity // Appl. Environ. Microbiol. – 1987. – V. 53. – P. 331–336.

Gossele F., Blain P., Marneffe T., Biot A. High-performance liquid chromatographic determination of virginiamycin in Stafac, premixes and animal feeds // Analyst. – 1991. – V. 116. – P. 1373-1380.

Han F., Li G., Zou J., Deng J., Huang L. Method for biosynthesizing virginiamycin by streptomycete. Patent CN102943102. – 2013.

Ives S.E., Titgemeyer E.C., Nagaraia T.G., del Barrio A., Bindel D.J., Hollis L.C. Effect of virginiamycin and monensin plus tylosin on ruminal protein metabolism in steers fed corn-based finishing diets with or without wet corn gluten feed // J. Anim. Sci. – 2002. – V. 80. – P. 3005-3015.

Jia B., Jin Z.H., Lei Y.L., Mei L.H., Li N.H. Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis // Biotechnol. Lett. – 2006. – V. 28. – P. 1811-1815.

Lam K.S., Veitch J.A., Lowe S.E., Forenza S. Effect of neutral resins on the production of dynemicins by Micromonospora chersina // J. Ind. Microbiol. – 1995. – V. 15. – P. 453–456.

Lane D.J. 1991. 16S/23S sequencing. In: Nucleic acid techniques in bacterial systematics / Stackebrandt E., Goodfellow M., eds. – Chichester: Wiley. – P. 115-175.

Lanoot B., Vancanneyt M., Hoste B., Cnockaert M.C., Piecq M., Gossele F., Swings J. Phenotypic and genotypic characterization of mutants of the virginiamycin producing strain 899 and its relatedness to the type strain of Streptomyces virginiae // System. Appl. Microbiol. – 2005. – V. 28. – P. 77–84.

Lavrenova V. 2016. Import of antibacterial drugs. In: Annual book «Business partner. Agriculture of Russia’2016». Moscow: Agricultural Technologies. – P. 38-41.

Mast Y., Wohlleben W. Streptogramins – two are better than one! // Int. J. Med. Microbiol. – 2014. – V. 304. – P. 44-50.

Nomura H., Kimura K., Sasao K., Okabe M., Ishikura T. A method for enhancing the yield of depsipeptide antibiotics by fermentation. Patent EP0247587. – 1990.

Phillips T., Chase M., Wagner S., Renzi C., Powell M., DeAngelo J., Michels P. Use of in situ solid-phase adsorption in microbial natural product fermentation development // J. Ind. Microbiol. Biotechnol. – 2013. – V. 40. – P. 411–425.

Pietra F. 2002. Biodiversity and natural product diversity. – Pergamon: Elsevier. – P. 30.

Prikrylova V., Blumauerova M., Sedmera P., Vanek Z., Marsalek J., Kristan V. Strain development in Streptomyces virginiae, a producer of virginiamycyn // Biotechnol. Bioind. – 1987. – V. 2. – P. 20-22.

Pulsawat N., Kitani S., Fukushima E., Nihira T. Hierarchical control of virginiamycin production in Streptomyces virginiae by three pathway-specific regulators: VmsS, VmsT and VmsR // Microbiology. – 2009. – V. 155. – P. 1250–1259.

Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. // Proc. Natl. Acad. Sci. USA – 1977. – V. 84. – P. 5463-5467.

Shojadoost B., Peighambari S.M., Nikpiran H. Effects of virginiamycin against experimentally induced necrotic enteritis in broiler chickens vaccinated or not with an attenuated coccidial vaccine // J. Appl. Poult. Res. – 2013. – V. 22. – P. 160–167.

Singh M., Chauhan S.S., Kumar P. Effect of supplementation on diets with BMD and virginiamycin on the growth performance, carcass characteristics and bacterial population in broiler chickens // Vet. World – 2008. – V. 1. – P. 141-143.

Singh M.P., Leighton M.M., Barbieri L.R., Roll D.M., Urbance S.E., Hoshan L., McDonald L.A. Fermentative production of self-toxic fungal secondary metabolites // J. Ind. Microbiol. Biotechnol. – 2010. – V. 37. – P. 335–340.

Takuya N., Shigeru K. Gene for biosynthesis of Virginiamycin M, their gene cluster and use thereof. Patent JP2007061045. – 2007.

Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A., Laxminarayan R. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data // Lancet Infect. Dis. – 2014. – V. 3099. – P. 1–9.

Virginiamycin global market and forecast research 2015.

http://www.marketresearchreports.com/chem-report/virginiamycin-global-market-and-forecast-research-2015 Accessed Oct 22, 2016.

Warr G.A., Veitch J.A., Walsh A.W., Hesler G.A., Pirnik D.M., Leet J.E., Lin P.F.M., Medina I.A., McBrien K.D., Forenza A., Clark J.M., Lam K.S. BMS-182123, a fungal metabolite that inhibits the production of TNF-a by macrophages and monocytes // J. Antibiot. – 1996. – V. 49. – P. 234–240.

Yang Y.K., Shimizu H., Shioya S., Suga K., Nihira T., Yamada Y. Optimum autoregulator addition strategy for maximum virginiamycin production in batch culture of Streptomyces virginiae // Biotechnol. Bioeng. – 1995. – V. 46. – P. 437-442.

Yong R. Culture medium for producing virginiamycin through Streptomyces virginiae fermentation and feeding method of culture medium. Patent CN104480174. - 2015.

Zhang L.J., Jin Z.H., Chen X.G., Jin Q.C., Feng M.G. Glycine feeding improves pristinamycin production during fermentation including resin for in situ separation // Bioprocess. Biosyst. Eng. – 2012. – V. 35. – P. 513-517.

Zhang Z., Zhao W., Cheng Q. Culture medium for biosynthesis of virginiamycin M. Patent CN101538539. – 2011.

Zvenigorodskii V.I., Tyaglov B.V., Voeikova T.A. Isolation of components of the peptide antibiotic virginiamycin and breeding of their producer, Streptomyces virginiae // Appl. Biochem. Microbiol. – 2001. –V. 37. – P. 260–266.

REFERENCES

Arshad, M., Anjum, Z.M., Asghar, M., Bhatti, H. (2011) Improving bio-ethanol yield: using virginiamycin and sodium flouride at a Pakistani distillery. African J. Biotechnol., 10(53), 11071-11074.

Biot, A.M. (1984). Virginiamycins: properties, biosynthesis, and fermentation. In: Biotechnology of industrial antibiotics (Vandamme E.J. ed.). New York–Basel: Dekker.

Bulygina, E.S., Kuznetsov, B.B., Marusina, A.I., Kravchenko, I.K., Bykova, S.A., Kolganova, T.V., Gal’chenko, V.F. (2002). Izychenie nukleotidnyh posledovatelnostei nifH genov u predstavitelei metanotrofnyh bakterii. Mikrobiologiya, 71(4), 500-508 (in Russian).

Cervantes, H., Bafundo, K., Ewing, P., Pesti, G., Bakalli, R. (2002). Dietary supplementation with virginiamycin or phytase improves phosphorus utilization in broiler chicks. Poult. Sci., 81 (Suppl. 1), 150.

Cocito, C. (1979). Antibiotics of the virginiiamycin family, inhibitors which contain synergistic components. Microbiol. Rev., 43(2), 145-198.

De Somer, P., Van Dijck, P. (1955). A preliminary report on antibiotic number 899, a streptogramin-like substance. Antibiot. Chemother., 5, 632-639.

Di Giambattista, M., Chinali, G., Cocito, C. (1989). The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. J. Antimicrob. Chemother., 24, 485–507.

Egorov, N.S. (1989). Promyshlennaya mikrobiologiya. Мoscow: Vysshaya shkola (in Russian).

Feighner, S.D., Dashkevicz, M.P. (1987). Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholytaurine hydrolase activity. Appl. Environ. Microbiol., 53, 331-336.

Gossele, F., Blain, P., Marneffe, T., Biot, A. (1991). High-performance liquid chromatographic determination of virginiamycin in Stafac, premixes and animal feeds. Analyst, 116, 1373-1380.

Grozina, A.A., Pronin, V.V., Dyumin, M.S. (2014). Morfologicheskaya otsenka stenki kishechnika tsyplyat krossa ‘Kobb 500’ na fone primeneniya antibiotika i probiotika. Rossiiskiy veterinarniy zhurnal, 4, 16-17 (in Russian).

Han, F., Li, G., Zou, J., Deng, J., Huang, L. (2013). Method for biosynthesizing virginiamycin by streptomycete. Patent CN102943102.

Hoyzman, A., Staroselsky, A., Ashash, U., Tarasova, K.S., Elisova, T.V. (2011). Vliyanie preparata Stafac®110 na produktivnost tsyplyat-broilerov v promyshlennyh usloviyah Rossii. Ptitsevodstvo, 7, 30-32 (in Russian).

Ives, S.E., Titgemeyer, E.C., Nagaraia, T.G., del Barrio, A., Bindel, D.J., Hollis, L.C. (2002). Effect of virginiamycin and monensin plus tylosin on ruminal protein metabolism in steers fed corn-based finishing diets with or without wet corn gluten feed. J. Anim. Sci., 80, 3005-3015.

Jia, B., Jin, Z.H., Lei, Y.L., Mei, L.H., Li, N.H. (2006). Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol. Lett., 28(22), 1811-1815.

Lam, K.S., Veitch, J.A., Lowe, S.E., Forenza, S. (1995). Effect of neutral resins on the production of dynemicins by Micromonospora chersina. J. Ind. Microbiol., 15(5), 453–456.

Lane, D.J. (1991). 16S/23S sequencing. In: Nucleic acid techniques in bacterial systematics (Stackebrandt, E. and Goodfellow, M., eds.). Chichester: Wiley.

Lanoot, B., Vancanneyt, M., Hoste, B., Cnockaert, M.C., Piecq, M., Gossele, F., Swings, J. (2005). Phenotypic and genotypic characterization of mutants of the virginiamycin producing strain 899 and its relatedness to the type strain of Streptomyces virginiae. System. Appl. Microbiol., 28, 77–84.

Lavrenova, V. (2016). Import of antibacterial drugs. In: Annual book Business partner. Agriculture of Russia 2016. Moscow: Agricultural Technologies.

Mast, Y., Wohlleben, W. (2014). Streptogramins – two are better than one! Int. J. Med. Microbiol., 304(1), 44-50.

Nomura, H., Kimura, K., Sasao, K., Okabe, M., Ishikura, T. (1990). A method for enhancing the yield of depsipeptide antibiotics by fermentation. Patent EP0247587.

Phillips, T., Chase, M., Wagner, S., Renzi, C., Powell, M., DeAngelo, J., Michels, P. (2013). Use of in situ solid-phase adsorption in microbial natural product fermentation development. J. Ind. Microbiol. Biotechnol., 40, 411–425.

Pietra, F. (2002) Biodiversity and natural product diversity. Pergamon: Elsevier.

Prikrylova, V., Blumauerova, M., Sedmera, P., Vanek, Z., Marsalek, J., Kristan, V. (1987). Strain development in Streptomyces virginiae, a producer of virginiamycyn. Biotechnol. Bioind., 2(2), P. 20-22.

Pulsawat, N., Kitani, S., Fukushima, E., Nihira, T. (2009). Hierarchical control of virginiamycin production in Streptomyces virginiae by three pathway-specific regulators: VmsS, VmsT and VmsR. Microbiology, 155, 1250–1259.

Sanger, F., Nicklen, S., Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA, 84, 5463-5467.

Shojadoost, B., Peighambari, S.M., Nikpiran, H. (2013). Effects of virginiamycin against experimentally induced necrotic enteritis in broiler chickens vaccinated or not with an attenuated coccidial vaccine. J. Appl. Poult. Res., 22(2), 160–167.

Singh, M., Chauhan, S.S., Kumar, P. (2008). Effect of supplementation on diets with BMD and virginiamycin on the growth performance, carcass characteristics and bacterial population in broiler chickens. Vet. World, 1(5), 141-143.

Singh, M.P., Leighton, M.M., Barbieri, L.R., Roll, D.M., Urbance, S.E., Hoshan, L., McDonald, L.A. (2010). Fermentative production of self-toxic fungal secondary metabolites. J. Ind. Microbiol. Biotechnol., 37, 335–340.

Takuya, N., Shigeru, K. (2007). Gene for biosynthesis of virginiamycin M, their gene cluster and use thereof. Patent JP2007061045.

Van Boeckel, T.P., Gandra, S., Ashok, A., Caudron, Q., Grenfell, B.T., Levin, S.A., Laxminarayan, R. (2014). Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect. Dis., 3099(14), 1–9.

Virginiamycin global market and forecast research 2015. Retrieved from: http://www.marketresearchreports.com/chem-report/virginiamycin-global-market-and-forecast-research-2015 Accessed Oct 22, 2016.

Warr, G.A., Veitch, J.A., Walsh, A.W., Hesler, G.A., Pirnik, D.M., Leet, J.E., Lin, P.F.M., Medina, I.A., McBrien, K.D., Forenza, A., Clark, J.M., Lam, K.S. (1996). BMS-182123, a fungal metabolite that inhibits the production of TNF-a by macrophages and monocytes. J. Antibiot. 49(3). 234–240.

Yang, Y.K., Shimizu, H., Shioya, S., Suga, K., Nihira, T., Yamada, Y. (1995). Optimum autoregulator addition strategy for maximum virginiamycin production in batch culture of Streptomyces virginiae. Biotechnol. Bioeng., 46, 437-442.

Yong, R. (2015). Culture medium for producing virginiamycin through Streptomyces virginiae fermentation and feeding method of culture medium. Patent CN104480174.

Zhang, L.J., Jin, Z.H., Chen, X.G., Jin, Q.C., Feng, M.G. (2012). Glycine feeding improves pristinamycin production during fermentation including resin for in situ separation. Bioprocess. Biosyst. Eng., 35(4), 513-517.

Zhang, Z., Zhao, W., Cheng, Q. (2011). Culture medium for biosynthesis of virginiamycin M. Patent CN101538539.

Zvenigorodskii, V.I., Tyaglov, B.V., Voeikova, T.A. (2001). Isolation of components of the peptide antibiotic virginiamycin and breeding of their producer, Streptomyces virginiae. Appl. Biochem. Microbiol., 37(3), 260–266.




DOI: http://dx.doi.org/10.15421/201687

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138