RELATIONSHIP OF MORPHOGENETIC PROCESSES IN WHEAT TISSUE CULTURE

L. P. Khlebova, E. D. Nikitina, A. V. Matsyura, O. V. Bychkova

Abstract


Relationship of different morphogenetic processes in immature embryo cultures from 15 spring bread wheat varieties of different ecological and geographical origin was studied. Embryos (14–16 days post anthesis with 1.3–1.5 mm in size) were placed with the sculletum upwards on a solid agar medium containing the inorganic components of Linsmaier & Skoog (LS), 3 % sucrose, 2.0 mg l-1 2,4-dichlorophenoxyacetic acid (2,4-D). Induced calli were subcultured after 25–30 days interval in fresh medium supplemented with 0.5 mg l-1 2,4-D and 0.5 mg l-1 kinetin. Embryogenic calli were transferred to LS medium containing 0.2 mg l-1 indole-3-acetic acid (IAA). Varietal polymorphism was revealed in relation to callusogenesis, morphogenesis and plant regeneration. The frequency of callusogenesis made 94.3 % with variation from 76.6 % to 100 % depending on a genotype. An active morphogenic process was revealed in 72 % of the varieties tested. The regeneration level depended on the type of morphogenesis (embryoidogenesis, hemmorhizogenesis and rhizogenesis). On average across all varieties it was not high and made 97.9 %; that is one morphogenic line produced about one plant. Organogenesis in 80.2 % of morphogenic calluses did not reach the development stage of the whole plant and stopped with root production. 

Plant regeneration by embryoido- and hemmorhizogenesis occurred in 19.8 % of morphogenic calluses. For the study of theoretical aspects of embryoido- and organogenesis as well as genetic transformation of plants the varieties with high regeneration potential are proposed as model objects (Spektr, Skala, Leones, and Zhnitsa). Positive correlation of embryoido-, hemmorhizogenesis and plant regeneration was revealed (r = 0.777), and it proves that there is a common genetic system responsible for those processes. When factorial trait shifted by 1 %, the resultant trait (regeneration) increases by 3.59 %. Negative correlation was found between rhizogenesis and regeneration level (r = -0.749). The rise in rhizogenesis frequency by 1 % results in regeneration decrease by 1.1 %. There is no correlation of calluso- and morphogenesis indicating that they are genetically independent. The analysis of multiple correlations between calluso-, morphogenesis and plant regeneration revealed the dominant factors determining regenerant output. They were the processes of the embryoido- and hemmorhizogenesis. Their contribution to the variability of plant regeneration level was about 51 %. The effect of rhizogenesis was about 12 %. Possible reasons of the revealed correlations between different morphogenetic processes are discussed.

 


Keywords


spring bread wheat; genotype; immature embryo; callus; morphogenesis; somatic embryogenesis; organogenesis; rhizogenesis; plant regeneration; correlation.

Full Text:

PDF

References


Авксентьева О.А., Петренко В.А. Роль генотипа, состава среды и типа экспланта в формировании первичного каллюса изогенных линий пшеницы // Вісник Харківського національного університету імені В.Н.Каразіна. Серія: біологія. – 2009. – Вип. 9. – № 856. – Р. 56–62.

Бычкова О.В. Оценка эффективности морфогенеза и регенерации яровой твердой пшеницы в культуре in vitro // Acta Biologica Sibirica. – 2016. – Т. 2. – № 1. – С. 139–149. doi: 10.14258/abs.v2i1-4.923.

Вечернина Н.А. Методы биотехнологии в селекции, размножении и сохранении генофонда растений. – Барнаул: Изд–во Алт. ун–та, 2004. – 205 с.

Вечернина Н. А., Тавркиладзе О.К. Методы биотехнологии в селекции, размножении и сохранении генофонда растений. – Барнаул: Изд–во Алт. ун–та, 2014. – 251 с.

Григорьева Л.П., Шлецер И.А. Скрининг сортов пшеницы по способности к морфогенезу в культуре незрелых зародышей in vitro // Известия Алтайского государственного университета. – 2006. – № 3. – С. 64–66.

Ерещенко О.В., Хлебова Л.П., Розова М.А. Оценка регенерационного потенциала яровой твердой пшеницы для создания засухоустойчивого селекционного материала // Биотехнология и общество в XXI веке, Барнаул, 15–18 сентября 2015 г.: сборник статей Международной научно–практической конференции. – Барнаул: Изд–во Алт. ун–та, 2015. – С. 341–345.

Катасонова А.А., Круглова Н.Н. Зародыш пшеницы как компетентный эксплант для получения морфогенных каллусов in vitro // Известия Уфимского научного центра РАН. – 2011. –№ 2. – 27–31.

Круглова Н.Н., Катасонова А.А. Незрелый зародыш пшеницы как морфогенетически компетентный эксплантат // Физиология и биохимия культурных растений. – 2009. – Т. 41. – № 2. – С. 124–131.

Мякишева Е.П., Таварткиладзе О.К., Дурникин Д.А. Новые особенности процесса клонального микроразмножения сорта картофеля селекции Западной Сибири // Вiological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University. – 2016. – № 1. – С. 375–389.

Никитина Е.Д., Хлебова Л.П., Ерещенко О.В. Разработка отдельных элементов технологии клеточной селекции яровой пшеницы на устойчивость к абиотическим стрессам // Известия Алтайского государственного университета. – 2014. – Т. 2. – № 3. – С. 50–54. doi: 10.14258/izvasu(2014)3.2-09.

Никитина Е.Д., Хлебова Л.П., Пронина Р.Д. Сомаклональная изменчивость in vitro как источник создания исходного материала для селекции мягкой пшеницы // Acta Biologica Sibirica. – 2015. – Т. 1. – № 3–4. – С. 171–186.

Никитина Е.Д., Хлебова Л.П., Соколова Г.Г., Ерещенко О.В. Создание стрессоустойчивого материала яровой мягкой пшеницы с использованием клеточной селекции in vitro // Известия Алтайского государственного университета. – 2013. – № 3–2 (79). – С. 95–98. doi: 10.14258/izvasu(2013)3.2-20

Сельдимирова О.А., Катасонова А.А., Круглова Н.Н. Формирование морфогенетического очага как начальный этап морфогенеза in vitro в каллюсах различного происхождения у пшеницы // Физиология и биохимия культ. растений. – 2011. – Т. 43. – № 4. – С. 297–306.

Benkırane H., Sabounji S., Chlyah A., Chlyah H. Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat // Plant Cell Tissue and Organ Culture. – 2000. – Vol. 61. – Р. 107–113.

Chauhan H., Desai S.A., Khurana P. Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum // Plant Cell Tiss Org Cult. – 2007. – Vol. 91. – Р. 191–199.

Delporte F., Pretova A., Jardin P., Watillon B. Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat // Protoplasma. – 2014. – № 251. – Р. 1455–1470. doi: 10.1007/s00709-014-0647-7.

Eudes F., Acharya S., Laroche A., Selinger L.B., Cheng K.J. A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants // Plant Cell, Tissue and Organ Culture. – 2003. – Vol. 73. – P. 147–157.

Jia H., Yu J., Yi D., Cheng Y., Xu W., Zhang L., Ma Z. Chromosomal intervals responsible for tissue culture response of wheat immature embryos // Plant Cell Tissue Organ Cult. – 2009. – Vol. 97(2). – 159–165.

Komatsuda T., Enomoto S., Nekajima K. Genetics of callus proliferation and shoot differentiation in barley // J. Hered. – 1989. – Vol. 80. – P. 345–350.

Konieczny R., Czaplicki A.Z., Golczyk H., Przywara L. Two pathways of plant regeneration in wheat anther culture // Plant Cell, Tissue, Organ Cult. – 2003. – Vol. 73. – № 2. – P. 177–187.

Kuzevanov V.Ya., Nefed'ev L.V., Sumtsova V.M., Lankevich S.V., Salyaev R.K. Growth rhythmicity and chemical differentiation of cells in wheat seedlings and calluses // Abstract of VIIth International Congress on Plant Tissue and Cell Culture. Amsterdam, June 24–29, 1990. – Amsterdam, 1990. – P. 300.

Kuzevanov V.Ya., Sumtsova V.М., Sizych S.V., Lankevich S.V., Brook T.A., Salyaev R.K. Morphogenesis and growth rhythmicity in wheat callus // Golden Jubilee Symposium on Genetic Research and Education (Current Trends and the Next Fifty Years). New Delhi, February 12–15, 1991. – New Delhi, 1991. – Vol. 3. P. 856–857.

Li B., Caswell K., Leung N., Chibbar R.N. Wheat (Triticum aestivum L.) somatic embryogenesis from isolated scutellum: Days post anthesis, days of spike storage, and sucrose concentration affect efficiency // In Vitro Cellular Devel Biology-Plant. – 2003. – Vol. 39. – Р. 20–23.

Linsmaier E., Skoog F. Organic growth factor reqularments of tobacco tissue culture // Physiol. Plant. – 1965. – Vol. 18. – № 1. – P. 100–127.

Maddock S.E., Lancaster V.A. et al. Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (T. aestivum) // J. Exp. Bot. – 1983. – Vol. 34. – № 144. – P. 915–926.

Maddock S.E., Risiott R., Parmar S. Somaclonal variation in the gliadin patterens of grains of regenerated wheat plants // J. Exp. Bot. – 1985. – Vol. 36. – № 173. – P. 1976–1984.

Magnusson J., Bornman C.H. Anatomical observation on somatic embryogenesis from scutellar tissue immature zygotic embryos of Triticum aestivum // Physiol. Plant. – 1985. – Vol. 63. – P. 137–145.

Marcinska I., Filek M., Biesaga–Koscielniak J., Sagi F., Bartok T. Cytokinin activities in cells of wheat inflorescence in dependence of its developmental stage // Cellular& Molecular Biology Letters. – 2001. – Vol. 6. – P. 313–318.

Miroshnichenko, D., Filippov M., Dolgov S. Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat // Australian Journal of Crop Science. – 2009. – № 3(2). – Р. 83–94.

Mokhtari A., Alizadeh H., Samadi B. Ya., Omidi M., Otroshy M., Moeini Z. Effect of plant growth regulators on direct shoot regeneration of wheat immature embryonic explants // Journal of Agricultural Engineering and Biotechnology. – 2013. – Vol. 1. – Iss. 3. – P. 74–80.

Nasircilar A.G., Turgut K., Fiscin K. Callus induction and plant regeneration from mature embryos of different wheat genotypes // Pak. J. Bot. – 2006. – № 38(2). – Р. 637–645.

Ozias-Akins P., Vasil I.K. Improved of somatic embryogenesis in T. aestivum (wheat) // Protoplasma. – 1983. – Vol. 117. – № 1. – P. 40–44.

Ozias-Akins P., Vasil I.K. Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum (wheat): Evidence for somatic embryogenesis // Protoplasma. – 1982. – Vol. 110. – № 2. – P. 95–105.

Salyaev R.K., Dudareva L.V., Lankevich S.V., Sumtsova V.M. The effect of low-intensity coherent radiation on the processes of morphogenesis in the wheat callus culture // Dokl. Akad. Nauk. – 2001. – Vol. 376. – Р. 830–832.

Sarker K.K., Kabir A.H., Sharmin S.A., Nasrin Z., Alam M.F. Improved somatic embryogenesis using L-asparagine in wheat (Triticum aestivum L.) // Sjemenarstvo. – 2007. – Vol. 24. – № 3–4. – P. 187–196.

Seldimirova O.A., Kruglova N.N. Properties of the initial stages of embryoidogenesis in vitro in wheat calli of various origin // Biology Bulletin. – 2013. – Vol. 40. – № 5. – Р. 447–454. doi: 10.1134/S1062359013050154

Skaptsov M., Kutsev M., Filipenko M., Khrapov E., Shinoyama H. Effect of modified heptamethiltrisiloxane on the efficiency of Agrobacterium-mediated transformation and expression of recombinant structure in plant cell and tissue culture // Key engineering materials. – 2016. – Vol. 683. – P. 506–510.

Stupko V.Ju., Zobova N.V. Callus culture technology of spring soft wheat stress tolerant varieties selection // Biochemistry and Biotechnology: research and development. New York: Published by Nova Science Publishers, Inc, 2012. – P. 52–62.

Zale J.M, Borchardt-Wier H., Kidwell K.K., Steber C.M. Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes // Plant Cell Tissue Organ Cult. – 2004. – Vol. 76. – Р. 277–281.

Zhang W., Wang X., Fan R., Yin G., Wang K., Du L., Xiao L., Yt X. Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos // Journal of Integrative Agriculture. – 2015. – Vol. 14. – Iss. 1. – Р. 11–19. doi: 10.1016/S2095-3119(14)60764-4.

REFERENCES

Avksentyeva, O.A., Petrenko, V.A. (2009). Role of the genotype, composition of medium and type of explant in formation of the first callus of wheat isogenic lines. Vesnik Harkovs'kogo nacional'nogo universiteta umeni V.N. Karazina. Seriya: biologiya, 9(856), 56–62 (in Russian).

Benkırane, H., Sabounji, S., Chlyah, A., Chlyah, H. (2000). Somatic embryogenesis and plant regeneration from fragments of immature inflorescences and coleoptiles of durum wheat. Plant Cell Tissue and Organ Culture, 61, 107–113.

Bychkova, O.V. (2016). Evaluation of morphogenesis and regeneration of hard spring wheat in vitro. Acta Biologica Sibirica, 2(1), 139–149. doi: 10.14258/abs.v2i1-4.923 (in Russian).

Chauhan, H., Desai, S.A., Khurana, P. (2007). Comparative analysis of the differential regeneration response of various genotypes of Triticum aestivum, Triticum durum and Triticum dicoccum. Plant Cell Tiss Org Cult., 91, 191–199.

Delporte, F., Pretova, A., Jardin, P., Watillon, B. (2014). Morpho-histology and genotype dependence of in vitro morphogenesis in mature embryo cultures of wheat. Protoplasma, 251, 1455–1470. doi: 10.1007/s00709-014-0647-7

Ereschenko, О.V., Khlebova, L.P., Rozova, M.A. (2015). Evaluation of durum wheat regeneration potential to create a drought-resistant selection material. Proceed. Int. Conf. Biotehnologiya I obshestvo v XXI v. Barnaul: Altai State University (in Russian).

Eudes, F., Acharya, S., Laroche, A., Selinger, L.B., Cheng, K.J. (2003). A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell, Tissue and Organ Culture, 73, 147–157.

Grigorieva, L.P., Shletser, I.A. (2006). Screening wheat caltivars for morphogenesis ability in immature embryo culture in vitro. Izvestiya Altaiskogo gosudarstvennogo universiteta. 3, 64–66 (in Russian).

Jia, H., Yu, J., Yi, D., Cheng, Y., Xu, W., Zhang, L., Ma, Z. (2009). Chromosomal intervals responsible for tissue culture response of wheat immature embryos. Plant Cell Tissue Organ Cult., 97(2), 159–165.

Katasonova, A.A., Kruglova, N.N. (2011). Wheat embryo as a competent explant for obtaining morphogenical calluses in vitro. Izvestiya Ufimskogo nauchnogo centra RAN, 2, 27–31 (in Russian).

Komatsuda, T., Enomoto, S., Nekajima, K. (1989). Genetics of callus proliferation and shoot differentiation in barley. J. Hered., 80, 345–350.

Konieczny, R., Czaplicki, A.Z., Golczyk, H., Przywara, L. (2003). Two pathways of plant regeneration in wheat anther culture. Plant Cell, Tissue, Organ Cult., 73(2), 177–187.

Kruglova, N.N., Katasonova, A.A. (2009). Immature wheat embryo as the morphogenetically competent explant. Fiziologiya I biohimiya kul'turnyh rastenii, 41(2), 124–131 (in Russian).

Kuzevanov, V.Ya., Nefed'ev, L.V., Sumtsova, V.M., Lankevich, S.V., Salyaev, R.K. (1990). Growth rhythmicity and chemical differentiation of cells in wheat seedlings and calluses. Abstract of VIIth International Congress on Plant Tissue and Cell Culture. Amsterdam.

Kuzevanov, V.Ya., Sumtsova, V.М., Sizych, S.V., Lankevich, S.V., Brook, T.A., Salyaev, R.K. (1991). Morphogenesis and growth rhythmicity in wheat callus. Golden Jubilee Symposium on Genetic Research and Education (Current Trends and the Next Fifty Years). New Delhi, 3, 856–857.

Li, B., Caswell, K., Leung, N., Chibbar, R.N. (2003). Wheat (Triticum aestivum L.) somatic embryogenesis from isolated scutellum: Days post anthesis, days of spike storage, and sucrose concentration affect efficiency. In Vitro Cellular Devel Biology-Plant, 39, 20–23.

Linsmaier, E., Skoog, F. (1965). Organic growth factor reqularments of tobacco tissue culture. Physiol. Plant, 18(1), 100–127.

Maddock S.E., Lancaster V.A. et al. (1983). Plant regeneration from cultured immature embryos and inflorescences of 25 cultivars of wheat (T. aestivum). J. Exp. Bot., 34(144), 915–926.

Maddock, S.E., Risiott, R., Parmar, S. (1985). Somaclonal variation in the gliadin patterens of grains of regenerated wheat plants. J. Exp. Bot., 36(173), 1976–1984.

Magnusson, J., Bornman, C.H. (1985). Anatomical observation on somatic embryogenesis from scutellar tissue immature zygotic embryos of Triticum aestivum. Physiol. Plant, 63, 137–145.

Marcinska, I., Filek, M., Biesaga-Koscielniak, J., Sagi, F., Bartok, T. (2001). Cytokinin activities in cells of wheat inflorescence in dependence of its developmental stage. Cellular& Molecular Biology Letters, 6, 313–318.

Miakisheva, E.P., Tavartkiladze, O.K., Durnikin, D.A. (2016). Clonal micropropagation of potato varieties by Western Siberia selection - the new features. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(1), 375–389.

Miroshnichenko, D., Filippov, M., Dolgov, S. (2009). Effects of daminozide on somatic embryogenesis from immature and mature embryos of wheat. Australian Journal of Crop Science, 3(2), 83–94.

Mokhtari, A., Alizadeh, H., Samadi, B. Ya., Omidi, M., Otroshy, M., Moeini, Z. (2013). Effect of plant growth regulators on direct shoot regeneration of wheat immature embryonic explants. Journal of Agricultural Engineering and Biotechnology, 1(3), 74–80.

Nasircilar, A.G., Turgut, K., Fiscin, K. (2006). Callus induction and plant regeneration from mature embryos of different wheat genotypes. Pak. J. Bot., 38(2), 637–645.

Nikitina, E.D., Khlebova, L.P., Ereschenko, O.V. (2014). The development of some technology elements of the spring wheat cell selection for resistance to abiotic stresses. Izvestiya Altaiskogo gosudarstvennogo universiteta, 3–2(83), 50–54. doi: 10.14258/izvasu(2014)3.2-09 (in Russian).

Nikitina, E.D., Khlebova, L.P., Pronina, R.D. (2015). In vitro somaclonal variation as initial material for bread wheat breeding. Acta Biologica Sibirica, 1(3–4), 171–186 (in Russian).

Nikitina, E.D., Khlebova, L.P., Sokolova, G.G., Ereschenko, O.V. (2013). The development of stress-resistant stock of spring bread wheat by in vitro cell selection. Izvestiya Altaiskogo gosudarstvennogo universiteta, 3–2(79) , 95–98. doi: 10.14258/izvasu(2013)3.2-20 (in Russian).

Ozias-Akins, P., Vasil, I.K. (1983). Improved of somatic embryogenesis in T. aestivum (wheat). Protoplasma, 117(1), 40–44.

Ozias-Akins, P., Vasil, I.K. (1982). Plant regeneration from cultured immature embryos and inflorescences of Triticum aestivum (wheat): Evidence for somatic embryogenesis. Protoplasma, 110(2), 95–105.

Salyaev, R.K., Dudareva, L.V., Lankevich, S.V., Sumtsova, V.M. (2001). The effect of low-intensity coherent radiation on the processes of morphogenesis in the wheat callus culture. Dokl. Akad. Nauk, 376, 830–832.

Sarker, K.K., Kabi, A.H., Sharmin, S.A., Nasrin, Z., Alam, M.F. (2007). Improved somatic embryogenesis using L-asparagine in wheat (Triticum aestivum L.). Sjemenarstvo, 24(3-4), 187–196.

Seldimirova, O.A., Katasonova, A.A., Kruglova, N.N. (2011). Formation of morphogenetic centre as an initial stage of morphogenesis in vitro of wheat calli of different origin. Fiziologiya I biohimiya kul'turnikh rastenii, 43(4), 297–306 (in Russian).

Seldimirova, O.A., Kruglova, N.N. (2013). Properties of the initial stages of embryoidogenesis in vitro in wheat calli of various origin. Biology Bulletin, 40 (5) , 447–454. doi: 10.1134/S1062359013050154

Skaptsov, M., Kutsev, M., Filipenko, M., Khrapov, E., Shinoyama, H. (2016). Effect of modified heptamethiltrisiloxane on the efficiency of Agrobacterium-mediated transformation and expression of recombinant structure in plant cell and tissue culture. Key engineering materials, 683, 506–510.

Stupko, V.Ju., Zobova, N.V. (2012). Callus culture technology of spring soft wheat stress tolerant varieties selection. Biochemistry and Biotechnology: research and development. New York: Published by Nova Science Publishers, Inc.

Vechernina, N.A. (2004). Biotechnology methods in plant breeding, propagation and gene pool preservation. Barnaul: Altai State University (in Russian).

Vechernina, N.A., Tavartkiladze, O.K. (2014). Biotechnology methods in plant breeding, propagation and gene pool preservation. Barnaul: Altai State University (in Russian).

Zale, J.M., Borchardt-Wier, H., Kidwell, K.K., Steber, C.M. (2004). Callus induction and plant regeneration from mature embryos of a diverse set of wheat genotypes. Plant Cell Tissue Organ Cult., 76, 277–281.

Zhang, W., Wang, X., Fan, R., Yin, G., Wang, K., Du, L., Xiao, L., Yt, X. (2015). Effects of inter-culture, arabinogalactan proteins, and hydrogen peroxide on the plant regeneration of wheat immature embryos. Journal of Integrative Agriculture, 14(1), 11–19. doi: 10.1016/S2095-3119(14)60764-4.




DOI: http://dx.doi.org/10.15421/201662

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138