CADMIUM AND NICKEL COMBINED EFFECT ON ASCORBATE-DEPENDENT MECHANISM OF ANTIOXIDATIVE DEFENSE SYSTEM OF PEA

T. A. Artiushenko, V. M. Gryshko

Abstract


The dynamics of changes in the content of different forms of ascorbic acid and ascorbate peroxidase activity in pea vegetative organs as components of antioxidant protection for the cadmium and nickel combined effect is investigated. It was established, that in assimilation tissues of pea the seedlings amount of ascorbic acid reduced form was more higher compared to the roots by 9 times. Using of toxicants in high concentration in the first hour of exposure, probably resulted a significant activation of the ascorbic acid synthesis in pea roots, as indicated by the increase in its quantity by 44%. In the early stages of ontogeny with increasing duration of cadmium and nickel compounds stress action to 7 hours in pea roots showed a trend towards increase in ascorbic acid at 23-68% in all the variants of the experiments. The aforementioned was accompanied by significant increase of the level of dehydroascorbate acid and product of ascorbate irreversible oxidation – 2,3-diketogulonic acid.

By contrast in the leaves under the toxicants influence at low concentrations is not the case of ascorbate amount changes. However we registered the increasing of dehydroascorbate acid amount by almost 20% compared to control, which may indicate the induction of the antioxidant synthesis. In other cases, there was a tendency to decrease in the ascorbic acid content. The study content of ascorbic acid various metabolites in the pea roots to 12 hours stressful action of cadmium and nickel compounds showed violations in pro-/antioxidant balance. This was confirmed by a decrease content of reduced ascorbate regards control level.

After a 12-hour of stress the ascorbate amount decreased, whereas dehydroascorbate and 2,3-diketogulonic acids continued to increase. Existing experimental data allows conclude that the 12 hour exposure of pea plants in a medium with a low concentration of the cadmium and nickel compounds the ascorbic acid content in the leaves increased towards control level, i.e. there is a significant induction of the synthesis process. In addition, the amount of ascorbate oxidized forms, as in previous research period, continued to increase. After 24 hours of experiment we registered similar to 12 hours trend of changes in the content of ascorbic acid metabolites.

Violation of pro-/antioxidant balance also accompanied by increased ascorbate peroxidase activity. In the pea root system there is the tendency to increase the ascorbate peroxidase activity and this is in concordance with the increasing content of ascorbic and dehydroascorbate acids. At the beginning of stressful activities caused by cadmium and nickel compounds in the leaves is not the case of ascorbate peroxidase activity changes, although 7-hour influence resulted in a statistically significant increase in activity specified oxidoreductase. By the action of heavy metals in low concentrations the content of ascorbic acid in pea leaves increased by 14%. High content in the medium of at least one of the metals since 7-hour exposure caused the depletion of antioxidant resources, as evidenced by the decrease of ascorbic acid in the assimilation organs. After 24 hours of experiment we observed a slowdown in ascorbate peroxidase activity, which could be explained by the lack of ascorbic acid under prolonged stress exposure.

Keywords: Pisum sativum L., cadmium, nickel, ascorbic acid, ascorbate peroxidase.


Full Text:

PDF

References


Гришко В.Н. Функционирование глутатионзависимой антиоксидантной системы и устойчивость растений при действии тяжелых металлов и фтора / В.Н. Гришко, Д.В. Сыщиков. – К.: Наукова думка, 2012. – 240.

Специальный практикум по биохимии и физиологии растений / [Под ред. М.М. Окунцова]. – Калининград: КГУ, 1981. – 37 с.

Сищиков Д.В. Глутатіонзалежна антиоксидантна система проростків гороху та кукурудзи за дії сполук нікелю / Д.В. Сищиков, В.М. Гришко // Укр. біохім. журн. – 2003. – Т. 75, № 4. –С. 131-138.

Сищиков Д.В. Накопичення нікелю вегетативними органами проростків гороху та кукурудзи / Д.В. Сищиков, В.М. Гришко // Доповіді Національної академії наук України. – 2006. - № 1. – С. 167-172.

Єгоршин О.О. Математичне планування польових дослідів та статистична обробка експериментальних даних // О.О. Єгоршин, М.В. Лісовий. – Харків: ННЦ Інститут ґрунтознавства та агрохімії УААН, 2005. – 194с.

Микієвич І.М. Роль аскорбінової кислоти та ферментів її метаболізму в адаптації рослин до токсичної дії іонів свинцю: автореф. дис. на здобуття наук. ступеня канд. біол. наук: спец. 03.00.12 «Фізіологія рослин» / І.М. Микієвич – Львів, 2003. – 20с.

Anjum N.A. Sulfur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione / N.A. Anjum, S. Umas, A. Ahmad, M. Iqbal, N.A. Khan // Plant growth regul. – 2008. – 54. – P. 271-279.

Foyer C.H. Redox regulation in photosynthetic organisms: Signaling, acclimation and practical implications / C.H. Foyer, G. Noctor // Antioxidants and Redox Signaling – 2009. – 11. – P. 862-905.

Ghasemi F. Effects of Ni2+ toxicity on Hill reaction and membrane functionality in maize / F. Ghasemi, R. Heidari, R. Jameii, L. Purakbar // Journal of Stress Physiology & Biochemistry. – 2012. – 8, N. 4. – P. 55-61.

Gill S.S. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants / S.S. Gill, N. Tuteja // Plant physiol. biochem. – 2010. – 48. – P. 909-930.

Greenberg Ch.S. Rapid single step membrane proteine assay / Ch.S. Greenberg, Rh.R. Gaddock // Clin. Chem. – 1982. – 28, N 7. – Р. 1726-1728.

Huang G.Y. The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) / G.Y. Huang, Y.S. Wang, C.C. Sun, J.D. Dong, Z.X. Sun // Int. J. oceanography and hydrobiology. – 2010. - XXXIX, N.1. – P. 11-25.

Liu Y.G. Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.) / Y.G. Liu, X. Wang, G.M. Zeng, D. Qu, J.J. Gu, M. Zhou, L. Chai // Chemosphere. – 2007. – 69. – P. 99-107.

Matamoros M.A. Biosynthesis of ascorbic acid in legume root nodules / M.A. Matamoros, J. Loscos, M.J. Coronado, J. Ramos, S. Sato, P.S. Testillano, S. Tabata, M. Becana // Plant Physiol. – 2006. – 141. – P. 1068-1077.

Nakano Y. Hydrogen peroxide is scavenger by ascorbate-specific peroxidase in spinach chloroplasts / Y. Nakano, K. Asada // Plant and Cell Physiol. – 1981 –22, N 5. – P.867-880.

Romero-Puertas M.C. Differential expression and regulation of antioxidative enzimes by cadmium in pea plants / M.C. Romero-Puertas, F.J. Corpas, M. Rodriguez-Serrano, M. Gomez, L.A. del Rio, L.M. Sandalio // J. plant physiol. – 2007. – 164. – P.1346-1357.

Smirnoff N. The role of ascorbate in the acclimation of leaves to high light / N. Smirnoff // Pharmaceutical Biology – 2012. – 50, N 5 – P. 634-634.

REFERENCES

Gryshko, V.N., Syshchykov, D.V. (2012). Mechanism of glutathione dependent antioxidant system and plant resistance under action of various heavy metals and fluorine. Kiev: Naukova dumka.

Practicum on Plant Biochemistry and Physiology. (1981). Okuntsov, M.M. (Ed.). Kaliningrad: Kaliningrad National University.

Syshchykov, D.V., Gryshko, V.M. (2003). Glutathione dependent antioxidant system of pea and maize growths under the action of nickel substances. Ukrainian Biochemistry Journal. 75(4), 131-138.

Syshchykov, D.V., Gryshko, V.M. (2006). Nickel accumulation by the vegetative parts of pea and maize growths. Reports of National Academy of Science of Ukraine. 1, 167-172.

Yehorshyn, O.O., Lisoviy, M.V. (2005). Mathematical prediction of field experiments and statistical processing of experimental data. Kharkiv: Research and Educational Center, Institute of Soil Sciences and Agrochemistry.

Mykievych, I.M. (2003). Role of ascorbic acid and its metabolism ferments in plant adaptation towards toxic action of lead ions. Thesis of Doctoral Dissertation. Lviv.

Anjum, N.A. Sulfur protects mustard (Brassica campestris L.) from cadmium toxicity by improving leaf ascorbate and glutathione / N.A. Anjum, S. Umas, A. Ahmad, M. Iqbal, N.A. Khan // Plant growth regul. – 2008. – 54. – P. 271-279.

Foyer C.H. Redox regulation in photosynthetic organisms: Signaling, acclimation and practical implications / C.H. Foyer, G. Noctor // Antioxidants and Redox Signaling – 2009. – 11. – P. 862-905.

Ghasemi, F., Heidary, R., Jameii, R., Parakbar, L. (2012). Effects of Ni2+ toxicity on Hill reaction and membrane functionality in maize. Journal of Stress Physiology & Biochemistry. 8(4), 55-61.

Gill, S.S., Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant physiol. biochem. 48, 909-930.

Greenberg, Ch.S., Gaddock, Ch.S. (1982). Rapid single step membrane proteine assay. Clin. Chem. 28(7), 1726-1728.

Huan, G.Y., Wang, Y.S., Sun, C.C., Dong, J.D., Sun, X. (2010). The effect of multiple heavy metals on ascorbate, glutathione and related enzymes in two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Int. J. oceanography and hydrobiology. XXXIX(1), 11-25.

Liu, Y.G., Wang, X., Zeng, G.M., Qu, D., Gu, J.J., Zhou, M., Chai, L. (2007). Cadmium-induced oxidative stress and response of the ascorbate–glutathione cycle in Bechmeria nivea (L.). Chemosphere. 69, 99-107.

Matamoros, M.A., Loscos, J., Coronado, M.J., Ramos, J., Sato, S., Testillano, P.S., Tabata, S., Becana, M. (2006). Biosynthesis of ascorbic acid in legume root nodules. Plant Physiol. 141, 1068-1077.

Nakano, Y., Asada, K. (1981). Hydrogen peroxide is scavenger by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiol. 22(5), 867-880.

Romero-Puertas, M.C., Corpas, F.J., Rodriguez-Serrano, M., Gomez, M., L.A. del Rio, L.A., Sandalio, L.M. (2007). Differential expression and regulation of antioxidative enzimes by cadmium in pea plants. J. plant physiol. 164, 1346-1357.

Smirnoff, N. (2012). The role of ascorbate in the acclimation of leaves to high light. Pharmaceutical Biology. 50(5), 634-634.




DOI: http://dx.doi.org/10.15421/20144_10

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




Since April 2018 Journal changed the editorial policy and starts to be published exclusively in English, and changed its main site into www.ujecology.com

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138