METALS IN THE METABOLISM OF HIPPOCAMPUS AND ROLE OF ZINC IN THE PATHOGENESIS OF EPILEPTIC SEIZURES

O. M. Kuchkovsky

Abstract


Physiological mechanisms of convulsions status during epilepsy or episindrom significantly different from the mechanisms, which were describe for other disorders associated with glutamatergic system, such as schizophrenia (a decrease of glutamate in neurons and increased dopaminergic load), drug addiction and alcoholism (the formation of endogenous opioids and dopamine, strengthening the role of GABA-ergic system).

With glutamatergic transmission are сconnect not only convulsive state, but also the realization of higher integrative functions. Therefore, the development of epilepsy, particularly  which caused glutamate, implemented by activating Zn-ergic hippocampal neurons, associate with complex changes in human mental functions. Based on a scientific literature about  of the role of chelating zinc in the mechanisms of glutamatergic transmission, we can  suggest it participation in the mechanisms of formation of epilepsy  convulsions.

In experience on animals, was show that in the animal organism of stressing correlative changes observe zinc content and secretory material in the hippocampus, Paneth cells  and B cells of pancreas. The nature of the changes depend on the stressor. When this change of zinc content in the hippocampus and hypothalamus (as the main regulator of stress reaction) were multidirectional that this can be explained by the release of metal together with secretory material in the hypothalamus into the bloodstream. Research epileptic activity  of hippocampus by administering to the animal chelate 8 BSQ allowed to establish the dependence between convulsant action  and first  stress condition of the animal. Evocation of stress by 8-BSQ and physical activity, immobilization and alcohol abuse found that the convulsive effect of this reagent during intravitreal research increased in the case of prior exposure by specified kinds of stressors. In this pre-convulsive effect on exertion increased by 266% and the zinc content was increased by 75%; in the case of pre-immobilization duration of seizures increased by 206% and the zinc content - 50%; in the case of pre-alcoholization duration of seizures increased by 234%, and a chelating zinc content - 75%. These results suggest a chelating zinc epileptiform participate in the mechanisms of seizures and, possibly, the development of mechanisms of temporal lobe epilepsy (hippocampal). The results of studies of zinc changes in central and peripheral organs of zinc-containing simulated at different functional states allow us to make the assumption that there is a common mechanism for coordination of functional activity as the hippocampus and other zinc-containing bodies with the help of changes in the chelating zinc metabolism, regulation is carried out by means of the hippocampus.


Keywords


8-TSQ; 8-BSQ; hippocampus; B-cells; Paneth cells; zinc

Full Text:

PDF

References


Авцын А.П. Ультраструктурные основы патологии клетки. / А.П. Авцын, В.А. Шахламов. – М.: Медицина, 1979. – 318 с.

Андрианова М.Ю. Магний и его баланс. / М.Ю. Андрианова, И.И. Дементьева, А.Ю. Мальцева //Анестезиология и реаниматология. – 1995. – №6. – С. 73–76.

Андрух П.Г. Этиология, нейрохимия и клиника современных форм тревожно-депрессивных расстройств / П.Г. Андрух // Медицинские исследования. — 2001. — Т. 1, вып. 1. — С. 109–110.

Вміст цинку в панкреатичних острівцях і гіпокампі при дії фізіологічних і надзвичайних подразників / В.А. Єщенко, В.Д. Бовт, М.М. Малько, А.В. Прохватілова, О.М. Кучковський // Фізіологічний журнал. – 2001 – № 2. – С. 66–69.

Дамбинова С.А. Нейрорецепторы глутамата /С.А. Дамбинова. – Л.: Наука, 1989. – 143 с.

Крыжановский Г.Н. Детерминантные структуры в патологии нервной системы: генераторные механизмы нейропатологических синдромов. / Г.Н. Крыжановский. – М.: Медицина, 1980. – 358 с.

Кудрин А.В. Микроэлементы в неврологии. / А.В. Кудрин, О.А. Громова. – М.: ГЭОТАР–Медиа, 2006. – 304 с.

Кучковський О.М. Вплив конвульсанту на вміст цинку в інсулоцитах і нейронах гіпокампу у мишей / О.М. Кучковський, В.Ю. Єщенко // Вісник ЗДУ. – 2001. – № 1. – С. 176–177.

Омельянчик Л.О. Адаптація та металолігандний гомеостаз / Л.О. Омельянчик, Ю.В. Єщенко, О.М. Кучковський [та ін.] – Запоріжжя: ЗНУ, 2013. – 351 с.

Astasheva E.V. Activation of glutamatergic system of the medial septal region facilitates the epileptogenesis / E.V. Astasheva, V.F. Kichigina //Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova. – 2009 – Vol. 59, № 6. – P. 743–749.

Coulter D.A. Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered "epileptic" gamma–aminobutyric acid A receptors in dentate granule cells. / D.A. Coulter // Epilepsia. – 2000. – Vol. 41, Suppl 6. – P. 96–99.

Enhanced susceptibility to spontaneous seizures of noda epileptic rats by loss of synaptic zn(2+) / [A. Takeda, M. Iida, M. Ando та ін.]. // PLoS One.. – 2013. – Vol. 8., №8. – doi: 10.1371/journal.pone.0071372.

Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus / A. Takeda, N. Sakurada, M. Ando [et al.] //Neurochem. Int. – 2009. – Vol. 55, N. 6. – P. 376–382.

Hippocampal zinc infusion delays the development of after discharges and seizures in a kindling model of epilepsy / S.M. Elsas, S. Hazany, W.L. Gregory [et al.] // Epilepsia. – 2009. – Vol. 50, N 4 – P. 870–879.

Ionic Glutamate Modulators in Depression (Zinc, Magnesium) / B. Szewczyk, E. Poleszak, A. Pilc [et al.] // Glutamate–Based Therapies for Psychiatric Disorders (Milestones in Drug Therapy) / P. Skolnick. – Berlin: A Birkhäuser Basel book, 2010. – P. 21–38.

Jansen K.L. Excitatory amino acid receptors in the human cerebral cortex: a quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine, L-[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites / K.L. Jansen, R.L. Faull, M. Dragunow //Neuroscience. – 1989. – Vol. 32, № 3. – P. 587–607.

Modulation of axonal sprouting along rostro-caudal axis of dorsal hippocampus and no neuronal survival in parahippocampal cortices by long-term post-lesion melatonin administration in lithium-pilocarpine model of temporal lobe epilepsy. / [M. Kazemi, S. Shokri, M. Ganjkhani et al.]. // Anat. Cell. Biol. – 2016. – Vol 49, № 1. – С. 21–33.

Zalups R.K. Cellular and molecular biology of metal / R.K. Zalups, J. Koropatnick. – N.Y.: CRC Press, 2010. – 442 p.

REFERENCES

Andrianova, M. Y., Dement'eva, I. I., & Mal'ceva, A. Y. (1995). Magnij i ego balans. Anesteziologija i reanimatologija, 73–76 (in Russian).

Andruh, P. G. (2001). Jetiologija, nejrohimija i klinika sovremennyh form trevozhno–depressivnyh rasstrojstv. Medicinskie issledovanija, 1(1), 109–110 (in Russian).

Astasheva, E. V., & Kichigina, V. F. (2009). Activation of glutamatergic system of the medial septal region facilitates the epileptogenesis. Zh. Vyssh. Nerv. Deiat. Im. I.P. Pavlova, 59(6), 743–749.

Avcyn, A. P., & Shahlamov, V. A. (1979). Ul'trastrukturnye osnovy patologii kletki. Мoscow: Medicina (in Russian).

Coulter, D. A. (2000). Mossy fiber zinc and temporal lobe epilepsy: pathological association with altered "epileptic" gamma–aminobutyric acid A receptors in dentate granule cells. Epilepsia, 41(6), 69–99.

Dambinova, S. A. (1989). Nejroreceptory glutamata. Leningrad: Nauka.

Elsas, S.–M., Hazany, S., Gregory, W. L., & Mody, I. (2009). Hippocampal zinc infusion delays the development of after discharges and seizures in a kindling model of epilepsy. Epilepsia, 870–879.

Eshhenko, V. A., Bovt, V. D., Mal'ko, M. M., V., P. A., & Kuchkovs'kij, O. M. (2001). Vmіst cinku v pankreatichnih ostrіvcjah і gіpokampі pri dії fіzіologіchnih і nadzvichajnih podraznikіv. Fіzіologіchnij zhurnal(2), 66–69 (in Ukrainian).

Jansen, K. L., Faull, R. L., & Dragunow, M. (1989). Excitatory amino acid receptors in the human cerebral cortex: a quantitative autoradiographic study comparing the distributions of [3H]TCP, [3H]glycine, L–[3H]glutamate, [3H]AMPA and [3H]kainic acid binding sites. Neuroscience, 32(3), 587–607.

Kazemi, M., Shokri, S., Ganjkhani, M., Ali, R., & Iraj, J. A. (2016). Modulation of axonal sprouting along rostro–caudal axis of dorsal hippocampus and no neuronal survival in parahippocampal cortices by long–term post–lesion melatonin administration in lithium–pilocarpine model of temporal lobe epilepsy. Anat Cell Biol., 49(1), 21–33.

Kryzhanovskij, G. N. (1980). Determinantnye struktury v patologii nervnoj sistemy: generatornye mehanizmy nejropatologicheskih sindromov. Moscow: Medicina (in Russian).

Kuchkovs'kij, O. M., & Eshchenko, Y. V. (2001). Vpliv konvul'santu na vmіst cinku v іnsulocitah і nejronah gіpokampu u mishej. Vіsnik ZDU(1), 176–177 (in Ukrainian).

Kudrin, A. V., & Gromova, O. A. (2006). Mikrojelementy v nevrologii. Moscow: GEOTAR–Media (in Russian).

Omeljanchik, L. O., Eshchenko, Yu. V., Kuchkovskij O.M. & Bovt V. D. (2013). Adaptacija ta metaloligandnij gomeostas. Zaporizhzhia: Zaporizhzhia National University (in Ukrainian).

Szewczyk, B., Poleszak, E., Pilc, A., & Nowak, G. (2010). Ionic Glutamate Modulators in Depression (Zinc, Magnesium). В P. Skolnick, Glutamate–Based Therapies for Psychiatric Disorders (Milestones in Drug Therapy) (рр. 21–38). Berlin: A Birkhäuser Basel book.

Takeda, A., Iida, M., Ando, M., Nakamura, M., Tamano, H., & Oku, N. (2013). Enhanced Susceptibility to Spontaneous Seizures of Noda Epileptic Rats by Loss of Synaptic Zn2+. PLoS One, 8(8), doi: 10.1371/journal.pone.0071372.

Takeda, A., Sakurada, N., Ando, M., Kanno, S., & Oku, N. (2009). Facilitation of zinc influx via AMPA/kainate receptor activation in the hippocampus. Neurochem Int., 55(6), 376–382.

Zalups, R., & Koropatnick., J. (2010). Cellular and molecular biology of metal. N.Y.: CRC Press.




DOI: http://dx.doi.org/10.15421/201633

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM

Refbacks

  • There are currently no refbacks.




 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138