Effect of colloidal silver nanoparticles on broiler chickens gut microbiota

M. D. Kucheruk, D. A. Zasiekin


We tested the colloidal silver nanoparticles as modern drugs for effective long-term reduction of microbial contamination in the air of broiler houses by intestinal rehabilitation of broiler chickens and simultaneous disinfection of water pipes and drinking water. The effective concentration of these solutions was determined. Cobb-500 broilers were used for the experiment. During the experiment, we set quantitative and qualitative composition of microflora of the intestinal contents of broiler chickens. Air samples were examined by sedimentation. We studied the productivity indices of chickens and product quality. Colloidal nanoscale silver solutions delicately spend intestinal sanitation, eliminating pathogens, virtually affecting the symbiotic intestinal flora. Siler nanoparticles helps to rationally correct the microbiocenosis of the intestines of broiler chickens: the composition of symbiotic microorganisms remains virtually unchanged against a statistically significant decrease in the amount of pathogenic and opportunistic microflora. This contributes to the intensification of the digestive process and increases the immune response to the continuously entering with food and water pathogenic microorganisms. The dependence between microbial composition of the intestines of birds and sanitary-hygienic state of air environment of broiler houses were proved. 


colloidal silver, nanoparticles; broiler chickens; productivity; microbiota; broiler house

Full Text:



Andreeva, N.L. (2004) Izuchenie bakterialnyih infektsiy na ptitsefabrikah [The study of bacterial infections in poultry farms]. Veterinariya, 5, 14–16 (in Russian).

Cammarota, G., Ianiro, G., Bibbò, S., Gasbarrini, A. (2014). Fecal microbiota transplantation: a new old kid on the block for the management of gut microbiota–related disease. J. Clin. Gastroenterol, 48, 80–84.

Crouzet, L., Rigottier–gois, L., Serror, P. (2015). Potential use of probiotic and commensal bacteria as non–antibiotic strategies against vancomycin–resistant enterococci. FEMS Microbiol. Lett., 362, fnv012.

Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes Text with EEA relevance. Available from: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32010L0063/.

Glants, S. (1999) Mediko–biologicheskaya statistika [Medico–biological statistics]. Moscow, Russia: Praktika (in Russian).

Hidaka, H., Eida, T., Takizawa, T. (2005). Bifidobacteria and microflora. Journal of Applied Microbiology, 5, 37–50.

Iebba, V., Totino, V., Gagliardi, A. (2016) Eubiosis and dysbiosis: the two sides of the microbiota. New Microbiologica, 39, 1–12.

Kavruk, L.S., Yurkov, V.M. (1999). Optimizatsiya mikrobiotsenoza pomeshchenii zhivotnovodcheskikh ferm kak osnova nespetsificheskoi profilaktiki stoilovykh infektsii zhivotnykh i poluchenie moloka vysokogo sanitarnogo kachestva. Problemy veterinarnoi sanitarii, gigieny i ekologii (dezinfektsiya, dezinsektsiya, deratizatsiya). Proceed. Int. Conf., Moscow (in Russian).

Kim, M., Koo, J.B., Baeg, K.J., Noh, Y.Y. (2012) Effect of curing temperature on nano–silver paste ink for organic thin–film transistors. Journal of Nanoscience and Nanotechnology, 12(4), 3272–3275. DOI: 10.1166/jnn.2012.5639.

Kucheruk, M.D., Solomon, V.V., Zasiekin, D.A. (2010) Likuvalna ta profilaktychna diia koloidnykh rozchyniv nanochastynok sribla [Medical and prophylactic effect of colloidal solutions of silver nanoparticles]. Available from: http://www.sworld.com.ua/index.php/ru/veterinary–medicine–and–pharmaceuticals/veterinary–medicine–and–zooengineers/2651–kucheruk–md–solomon–bb–zaskn–yes/ (in Ukrainian)

Kucheruk, M.D. (2016). Sanitarno–hihiienichni aspekty korektsii mikroendoekolohii kyshechnyka tvaryn [Sanitation aspects of animal gut correction] The World of Science and Innovation. Ivanovo, LLC "Scientific World" (in Ukrainian).

Kulskiy, L.A. (1987) Serebryanaya voda [Silver water]. Kiev, Naukova Dumka (in Russian).

Le Ouay, B., Stellacci, F. (2015) Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 10(3), 339–354. DOI: 10.1016/j.nantod.2015.04.002

McFarland, L.V. (2008). Antibiotic–associated diarrhea: epidemiology, trends and treatment. Future Microbiol. 3, 563–578.

Pedahzur, R., Ovadia, L., Fattall, B., I. Shuval, H. (1995). The interaction of silver ions and hydrogen peroxide in the inactivation of E. coli: a preliminary evaluation of a new long acting residual drinking water disinfectant Water Science and Technology 31, 5–6.

Podkopaev, D.O., Shaburova, L.N., Balandin, G.V. (2014). Comparative evaluation of antimicrobial activity of silver nanoparticles. Nanotechnologies in Russia, 9,(1–2), 93–97. DOI: 10.1134/S1995078014010121

Roberfroid, M.B., Bornet, F., Bouley, C., Cummings, J.H. (1995). Colonic microflora: nutrition and health. Nutrition Reviews, 53, 127–130.

Shahverdy, A.R., Fakhimi, A., Shahverdi, A.R., Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus and Escherichia coli. Nanomedicine–Nanotechnology biology and medicine, 3(2), 168–171. DOI: 10.1016/j.nano.2007.02.001

Silvestry–Rodriguez, N., Bright, K.R., Uhlmann, D.R., Gerba, C.P. (2007). Inactivation of Pseudomonas aeruginosa and Aeromonas hydrophila by silver in tap water. Environmental Science and health, 42 (11), 122–128.

Strompfova, V., Laukova, A., Ouvehand, A. (2004). Lactobacilli and enterococci – potential probiotics for dogs. Folia microbial, 49, 2003–2007.

Zoetendal, E.G., Rajilic–Stojanovic, M., de Vos, W.M. (2008). High–throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, 57(11), 1605–1615. DOI: 10.1136/gut.2007.133603

DOI: http://dx.doi.org/10.15421/20170.10

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2017 Ukrainian Journal of Ecology. ISSN 2520-2138